Skip to content

Latest commit

 

History

History
141 lines (123 loc) · 4.12 KB

README.md

File metadata and controls

141 lines (123 loc) · 4.12 KB

The Travelling Salesman Problem in C++

Algorithms:

  • Nearest Neighbour
  • Opt 2
  • Simulated Annealing
  • Compressed Annealing

Papers:

Examples:

TSP

// Seed the random number generator
std::srand(static_cast<unsigned>(std::time(nullptr)));

// A lambda function returning a random double in the given range
auto frand = [](double min, double max)
{
    return min + (max - min) * (static_cast<double>(std::rand()) / static_cast<double>(RAND_MAX));
};

Vector2 depot(0.0, 0.0);

// Populate the vector with random points
std::vector<Vector2> points;
for (std::size_t i = 0; i < SIZE; i++)
    points.emplace_back(frand(-MAX, MAX), frand(-MAX, MAX));

try
{
    // Initialize the tsp<Vector2> class with 4 parameters
    // (1) The "depot" object
    // (2) The "city" objects
    // (3) A function returning the service time demanded by each "city" object
    // (4) A function returning the distance between two "city" objects
    tsp<Vector2> path
    (
        depot,
        points,
        [](const Vector2& v)
        {
            return 0.0;
        },
        [](const Vector2& A, const Vector2& B)
        {
            double xdiff = A.x() - B.x();
            double ydiff = A.y() - B.y();
            
            return xdiff * xdiff + ydiff * ydiff;
        }
    );

    // Used to find a quick and greedy solution
    path = path.nneighbour();

    // Used to optimize an already existing route
    path = path.opt2();

    // Greedy and local optimization methods rarely result in finding
    // the exact solution, but give good enough approximations of it.
    // sannealing is used in order to escape this local minima
    // and if possible reach optimality
    path = path.sannealing();

    // Used in conjuction with simulated annealing in order to optimize
    // the solution it returned with regards to its local neighbourhood
    path = path.opt2();
}
catch (std::exception& e)
{
    std::cerr << e.what() << std::endl;
}

TSPTW

// Map each previously created point to a timewindow
for (const auto& point : points)
{
    // Maybe check tstamp.cpp
    // for implementation details on the TStamp struct ("Timestamp")
    TStamp l(7, static_cast<uint8_t>(frand(15.0, 30.0)));
    TStamp r(8, static_cast<uint8_t>(frand(0.0,  15.0)));

    timewindows[point] = tsptw<Vector2>::Timewindow
    (
        static_cast<double>(l.seconds()),
        static_cast<double>(r.seconds())
    );
}

try
{
    // Initialize the tsp<Vector2> class with 6 parameters
    // (1) The "depot" object
    // (2) The "city" objects
    // (3) A function returning the service time demanded by each "city" object
    // (4) A function returning the distance between two "city" objects
    // (5) The departure time from the "depot" object
    // (6) A function returning the timewindow corresponding to
    //     the specified "city" object
    tsptw<Vector2> path
    (
        depot,
        points,
        [&depot](const Vector2& v)
        {
            return v == depot ? 0.0 : 30.0;
        },
        [](const Vector2& A, const Vector2& B)
        {
            double xdiff = A.x() - B.x();
            double ydiff = A.y() - B.y();
            
            return xdiff * xdiff + ydiff * ydiff;
        },
        TStamp(7, 30).seconds(),
        [&timewindows](const Vector2& point)
        {
            return timewindows[point];
        }
    );

    path = path.nneighbour();

    // A different flavor of simulated annealing that takes into consideration
    // the penalty i.e. the sum of all timewindow divergences as well as the cost
    // of the path
    // NOTICE:
    // if the original path is a feasible solution,
    // the compressed annealing algorithm guarantees a feasible solution
    path = path.cannealing();
}
catch (std::exception& e)
{
    std::cerr << e.what() << std::endl;
}