forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForeachFunctors.cuh
421 lines (383 loc) · 16.8 KB
/
ForeachFunctors.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/cuda/MultiTensorApply.cuh>
namespace at { namespace native {
namespace {
// For FP16 or BFloat16 inputs, ops should perform internal math in FP32.
template<typename scalar_t> struct get_opmath_t { using opmath_t = scalar_t; };
template<> struct get_opmath_t<at::Half> { using opmath_t = float; };
template<> struct get_opmath_t<at::BFloat16> { using opmath_t = float; };
// Initializes args and checks if all args are aligned
template<int depth, typename T>
__device__ bool init_args(
T** args,
TensorListMetadata<depth>& tl,
int chunk_idx,
int chunk_size,
int tensor_loc) {
bool all_aligned = true;
for (int i = 0; i < depth; i++) {
args[i] = (T*)tl.addresses[i][tensor_loc];
args[i] += chunk_idx * chunk_size;
if (!is_aligned(args[i])) {
all_aligned = false;
}
}
return all_aligned;
}
// Initializes args and checks if all args are aligned
template<int depth, typename T, typename T2>
__device__ bool init_args(
T** args,
TensorListScalarListMetadata<T2, depth>& tl,
int chunk_idx,
int chunk_size,
int tensor_loc) {
bool all_aligned = true;
for (int i = 0; i < depth; i++) {
args[i] = (T*)tl.addresses[i][tensor_loc];
args[i] += chunk_idx * chunk_size;
if (!is_aligned(args[i])) {
all_aligned = false;
}
}
return all_aligned;
}
template<int depth, typename T>
__device__ void load_args(T r_args[][kILP], T** args, int i_start, int chunk_size, int n) {
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
for (int r_index = 0; r_index < depth; r_index++) {
r_args[r_index][ii] = 0;
if(i < n && i < chunk_size) {
r_args[r_index][ii] = args[r_index][i];
}
}
}
}
template<typename T>
__device__ void store_args(T* dst, T* src, int i_start, int chunk_size, int n) {
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if(i < n && i < chunk_size)
dst[i] = src[ii];
}
}
template<int res_arg_index, typename Op, typename T, typename opmath_t>
__device__ __forceinline__ void binary_op_scalar(
T r_args[][kILP],
T** args,
opmath_t scalar,
int n,
int chunk_size,
bool all_aligned,
Op op) {
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(scalar)));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
// Regardless if depth is 1 (for inplace) or 2 (for out of place), r_args has depth 1
load_args<1>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(scalar)));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
template<int res_arg_index, typename Op, typename T, typename opmath_t>
__device__ __forceinline__ void pointwise_op_scalar(
T r_args[][kILP],
T** args,
opmath_t scalar,
int n,
int chunk_size,
bool all_aligned,
Op op) {
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
load_store(r_args[2], args[2], 0, i_start);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(static_cast<opmath_t>(r_args[0][ii]) +
scalar * op(static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
// Regardless if depth is 3 (for inplace) or 4 (for out of place), r_args has depth 3
load_args<3>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(static_cast<opmath_t>(r_args[0][ii]) +
scalar * op(static_cast<opmath_t>(r_args[1][ii]),
static_cast<opmath_t>(r_args[2][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
//
// Binary Functors
//
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpScalarFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t scalar) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
binary_op_scalar<res_arg_index>(r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpScalarListFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListScalarListMetadata<opmath_t, depth>& tl,
Op op) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
opmath_t scalar = tl.scalar_vals[tensor_loc];
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
binary_op_scalar<res_arg_index>(r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct BinaryOpListAlphaFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t alpha) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
alpha * static_cast<opmath_t>(r_args[1][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start , 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
alpha * static_cast<opmath_t>(r_args[1][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
//
// Unary Functors
//
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct ZeroFunctor {
__device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<1>& tl) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = 0;
}
// store
load_store(args[0], r_args[0], i_start, 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = 0;
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct UnaryOpFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
Op op) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii])));
}
// store
load_store(args[res_arg_index], r_args[0], i_start, 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
load_args<r_args_depth>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii])));
}
store_args(args[res_arg_index], r_args[0], i_start, chunk_size, n);
}
}
}
};
//
// Pointwise Functors
//
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct PointwiseOpScalarFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
Op op,
opmath_t scalar) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
pointwise_op_scalar<res_arg_index>(r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template<typename T, int depth, int r_args_depth, int res_arg_index>
struct PointwiseOpScalarListFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListScalarListMetadata<opmath_t, depth>& tl,
Op op) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
opmath_t scalar = tl.scalar_vals[tensor_loc];
n -= chunk_idx * chunk_size;
T r_args[r_args_depth][kILP];
pointwise_op_scalar<res_arg_index>(r_args, args, scalar, n, chunk_size, all_aligned, op);
}
};
template<typename T, int depth>
struct PointwiseOpListFunctor {
using opmath_t = typename get_opmath_t<T>::opmath_t;
template<typename Op> __device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
Op op) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* args[depth];
bool all_aligned = init_args<depth>(args, tl, chunk_idx, chunk_size, tensor_loc);
n -= chunk_idx * chunk_size;
T r_args[depth - 1][kILP];
// to make things simple, we put aligned case in a different code path
if(n % kILP == 0 && chunk_size % kILP == 0 && all_aligned) {
for(int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_args[0], args[0], 0, i_start);
load_store(r_args[1], args[1], 0, i_start);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii])));
}
// store
load_store(args[2], r_args[0], i_start , 0);
}
}
else {
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
load_args<depth - 1>(r_args, args, i_start, chunk_size, n);
#pragma unroll
for(int ii = 0; ii < kILP; ii++) {
r_args[0][ii] = static_cast<T>(op(static_cast<opmath_t>(r_args[0][ii]),
static_cast<opmath_t>(r_args[1][ii])));
}
store_args(args[2], r_args[0], i_start, chunk_size, n);
}
}
}
};
} // namespace
}} // namespace at::native