-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_spherical_shell_ex.m
223 lines (205 loc) · 7.65 KB
/
plot_spherical_shell_ex.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
%function plot_spherical_shell(p,t)
% Assume p contains the n points in a n-by-3 matrix.
function plot_spherical_shell_ex(p)
% Radii of the outer and inner shells.
Ro = 0.5;
Ri = 1;
% Define a distance function for the spherical shell that is
% non-positive in inside and zero on the boundary.
fdist = @(p) max(sqrt(p(:,1).^2 + p(:,2).^2 + p(:,3).^2)-Ro,-(sqrt(p(:,1).^2 + p(:,2).^2 + p(:,3).^2)-Ri));
t=delaunayn(p);
pmid=zeros(size(t,1),3);
for ii=1:4
pmid=pmid+p(t(:,ii),:)/4; % Compute the circumcenter of the tetrahedra.
end
% Only keep the tetrahedra whose circumcenters are inside shell.
t=t(feval(fdist,pmid)<-1e-3,:);
% Color for the surfaces (in RGB)
bcol=[250 250 0]/256;
icol=[250 250 0]/256;
% Color for the lines indicating where the spherical shell will be split.
lcol = [255 0 204]/255;
% First do the whole sphere
%figure
subplot(2,2,1)
triW=surftri(p,t);
hW=trimesh(triW,p(:,1),p(:,2),p(:,3));
hold off
% Set the properties of the patches.
set(hW,'facecolor',icol,'edgelighting','phong','facelighting','phong','LineStyle','none','marker','.','markeredgecolor','b','markersize',15);
axis equal
view([40.5 10])
% Add a light
camlight
% Plot line around sphere where it will be cut in half.
hold on;
thc = linspace(-pi/2,pi/2,101)';
[xc,yc,zc] = sph2cart(0*thc,thc,0*thc+Ro);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*thc+pi,thc,0*thc+Ro);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
% axis off
% Now plot the spherical shell split in half.
%figure
subplot(2,2,2)
triHb=surftri(p,t); % triangles for the inner and outer boundaries
incl = find(p(:,2) > 0); % split the sphere open along the x-z plane.
t=t(any(ismember(t,incl),2),:);
triHb=triHb(any(ismember(triHb,incl),2),:);
triHs=surftri(p,t); % triangles for the sides.
triHs=setdiff(triHs,triHb,'rows');
hS=trimesh(triHs,p(:,1),p(:,2),p(:,3));
hold on;
hB=trimesh(triHb,p(:,1),p(:,2),p(:,3));
hold off
% Set the properties of the patches.
set(hS,'facecolor',icol,'edgelighting','phong','facelighting','phong','LineStyle','none','marker','.','markeredgecolor','k','markersize',15);
set(hB,'facecolor',bcol,'edgelighting','phong','facelighting','phong','LineStyle','none','marker','.','markeredgecolor','b','markersize',15);
axis equal
view([40.5 10])
% Add a light
camlight
hold on;
% Plot the outline of the wedge.
% plotWedgeOutline;
% axis off
%
% Extract out a wedge
%
% Data file containing the nodes.
%load SphericalShellEx
[lam,th] = cart2sph(p(:,1),p(:,2),p(:,3));
incl = find(lam >= 0 & lam <= pi/6 & th >= 0 & th <= pi/4);
p = p(incl,:);
[lam,th,r] = cart2sph(p(:,1),p(:,2),p(:,3));
ido = find(r > Ro - 0.01);
idi = find(r < Ri + 0.01);
% Plot the interior and boundary points as different colors
%figure;
subplot(2,2,4)
plot3(p(:,1),p(:,2),p(:,3),'k.','MarkerSize',15), hold on
plot3(p(ido,1),p(ido,2),p(ido,3),'b.','MarkerSize',15)
plot3(p(idi,1),p(idi,2),p(idi,3),'b.','MarkerSize',15)
% Plot the outline of the wedge.
% plotWedgeOutline;
% Determine the nodes for a 32-by-32 stencil located at the center of
% the wedge.
fdc = zeros(1,3);
[fdc(1),fdc(2),fdc(3)] = sph2cart(pi/12,pi/8,(Ri+Ro)/2);
% Compute the closest node to the center.
re2 = sum((repmat(fdc,[length(p) 1]) - p).^2,2);
[temp,id] = sort(re2);
nn = 32;
% Plot the nodes of the stencil with the other nodes.
% plot3(p(id(1),1),p(id(1),2),p(id(1),3),'ro','MarkerSize',9,'LineWidth',2)
% plot3(p(id(2:nn+1),1),p(id(2:nn+1),2),p(id(2:nn+1),3),'go','MarkerSize',9,'LineWidth',2)
% view([40.5 10])
% axis off
% Plot the nodes of the stencil.
%figure,
subplot(2,2,3)
plot3(p(id(1),1),p(id(1),2),p(id(1),3),'k.','MarkerSize',15), hold on
plot3(p(id(1),1),p(id(1),2),p(id(1),3),'ro','MarkerSize',9,'LineWidth',2)
plot3(p(id(2:nn+1),1),p(id(2:nn+1),2),p(id(2:nn+1),3),'k.','MarkerSize',15)
plot3(p(id(2:nn+1),1),p(id(2:nn+1),2),p(id(2:nn+1),3),'go','MarkerSize',9,'LineWidth',2)
view([40.5 10])
% axis off
function plotWedgeOutline
% Plot the wedge lines;
thc = linspace(0,pi/4,11)';
lamc = linspace(-0.1,pi/6,11)';
rc = linspace(Ri,Ro,11)';
[xc,yc,zc] = sph2cart(0*lamc + lamc(1),0*thc + thc(1),rc);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(end),0*thc + thc(1),rc);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(1),0*thc + thc(end),rc);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(end),0*thc + thc(end),rc);
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(1),thc,0*rc + rc(1));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(end),thc,0*rc + rc(1));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(1),thc,0*rc + rc(end));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(0*lamc + lamc(end),thc,0*rc + rc(end));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(lamc,thc(1),0*rc + rc(end));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(lamc,thc(end),0*rc + rc(end));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(lamc,thc(1),0*rc + rc(1));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
[xc,yc,zc] = sph2cart(lamc,thc(end),0*rc + rc(1));
plot3(xc,yc,zc,'--','LineWidth',2,'Color',lcol)
end
end
% t=t(any(ismember(t,incl),2),:);
% tri1=tri1(any(ismember(tri1,incl),2),:);
% h2=trimesh(tri1,p(:,1),p(:,2),p(:,3));
% set(h2,'facecolor',icol,'edgelighting','phong','facelighting','phong','LineStyle','none','marker','.','markeredgecolor','b','markersize',15);
% % Plot the nodes
% [lam,th,r] = cart2sph(p(:,1),p(:,2),p(:,3));
% % Indicies for the nodes on the top.
% idt = find( r > Ro - 0.01);
% % Nodes on the top;
% pt = p(idt,:);
% % Indicies for the nodes on the top and half the sphere
% idht = find(pt(:,2) > 0);
% h3 = scatter3(pt(idht,1),pt(idht,2),pt(idht,3),50,0*pt(idht,3)+Ri,'.');
%
% % Indicies for the nodes on the bottom.
% idb = find( r < Ri + 0.01);
% % Nodes on the top;
% pb = p(idb,:);
% % Indicies for the nodes on the bottom and half the sphere
% idhb = find(pb(:,2) > 0);
% h3 = scatter3(pb(idhb,1),pb(idhb,2),pb(idhb,3),50,0*pb(idhb,3)+Ri,'.');
%
%
% tri1=surftri(p,t);
% if nargin>2 & ~isempty(expr)
% incl=find(eval(expr));
% t=t(any(ismember(t,incl),2),:);
% tri1=tri1(any(ismember(tri1,incl),2),:);
% tri2=surftri(p,t);
% tri2=setdiff(tri2,tri1,'rows');
% h=trimesh(tri2,p(:,1),p(:,2),p(:,3));
% set(h,'facecolor',icol,'edgecolor','k');
% hold on
% end
% h=trimesh(tri1,p(:,1),p(:,2),p(:,3));
% hold off
% set(h,'facecolor',bcol,'edgecolor','k');
% axis equal
% cameramenu
%
%
% dim=size(p,2);
% switch dim
% case 2
% trimesh(t,p(:,1),p(:,2),0*p(:,1),'facecolor','none','edgecolor','k');
% view(2)
% axis equal
% axis off
% case 3
% tri1=surftri(p,t);
% if nargin>2 & ~isempty(expr)
% incl=find(eval(expr));
% t=t(any(ismember(t,incl),2),:);
% tri1=tri1(any(ismember(tri1,incl),2),:);
% tri2=surftri(p,t);
% tri2=setdiff(tri2,tri1,'rows');
% h=trimesh(tri2,p(:,1),p(:,2),p(:,3));
% set(h,'facecolor',icol,'edgecolor','k');
% hold on
% end
% h=trimesh(tri1,p(:,1),p(:,2),p(:,3));
% hold off
% set(h,'facecolor',bcol,'edgecolor','k');
% axis equal
% cameramenu
% otherwise
% error('Unimplemented dimension.');
% end