diff --git a/doc/optimization/jso.qbk b/doc/optimization/jso.qbk new file mode 100644 index 0000000000..c4d2e4c5d5 --- /dev/null +++ b/doc/optimization/jso.qbk @@ -0,0 +1,97 @@ +[/ +Copyright (c) 2024 Nick Thompson +Use, modification and distribution are subject to the +Boost Software License, Version 1.0. (See accompanying file +LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +] + +[section:jso Algorithm jSO] + +[heading Synopsis] + +`` + #include + + namespace boost::math::optimization { + + template struct jso_parameters { + using Real = typename ArgumentContainer::value_type; + ArgumentContainer lower_bounds; + ArgumentContainer upper_bounds; + size_t initial_population_size = 0; + size_t max_function_evaluations = 0; + ArgumentContainer const * initial_guess = nullptr; + }; + + template + ArgumentContainer jso( + const Func cost_function, jso_parameters const &jso_params, URBG &gen, + std::invoke_result_t target_value = std::numeric_limits>::quiet_NaN(), + std::atomic *cancellation = nullptr, + std::atomic> *current_minimum_cost = nullptr + std::vector>> *queries = nullptr); + + } // namespaces +`` + +The `jso` function provides a (hopefully) faithful implementation of Algorithm jSO, described in Brest et al 2017. +This algorithm came in second place in the 2017 conference on evolutionary computing competition. +It is an improvement on the classical differential evolution algorithm, which adapts the parameters in such as way that exploration is favored during early stages of the algorithm, and exploitation is favored during the later stages. +In particular, it incorporates numerous ideas in the literature (in particular SHADE and L-SHADE) which aid in fast convergence. +There are: Use of a historical archive of rejected vectors to provide information about convergence direction, +adapting crossover and mutation parameters based on whether they were associated with successful updates, linear population size reduction, and use of "current-to-p-best" mutation. + +Like our implementation of differential evolution, it minimizes a cost function defined on a continuous space represented by a set of bounds. +Again this function has been designed more for progress observability, graceful cancellation, and post-hoc data analysis than for speed of convergence. + +[heading Parameters] + + `lower_bounds`: A container representing the lower bounds of the optimization space along each dimension. The `.size()` of the bounds should return the dimension of the problem. + `upper_bounds`: A container representing the upper bounds of the optimization space along each dimension. It should have the same size of `lower_bounds`, and each element should be >= the corresponding element of `lower_bounds`. + `initial_population_size`: How big the first generation should be. Defaults to ceil(25log(D+1)sqrt(D)). + `max_function_evaluations`: Defaults to 10000D, where D is the dimension of the space. + `initial_guess`: An optional guess for where we should start looking for solutions. + +The defaults were chosen from a reading of Brest 2017. + +[heading The function] + +`` +template +ArgumentContainer jso(const Func cost_function, + jso_parameters const &jso_params, + URBG &gen, + std::invoke_result_t value_to_reach = std::numeric_limits>::quiet_NaN(), + std::atomic *cancellation = nullptr, + std::atomic> *current_minimum_cost = nullptr, + std::vector>> *queries = nullptr) +`` + +Parameters: + + `cost_function`: The cost function to be minimized. + `jso_params`: The parameters to the algorithm as described above. + `gen`: A uniform random bit generator, like `std::mt19937_64`. + `value_to_reach`: An optional value that, if reached, stops the optimization. This is the most robust way to terminate the calculation, but in most cases the optimal value of the cost function is unknown. If it is, use it! Physical considerations can often be used to find optimal values for cost functions. + `cancellation`: An optional atomic boolean to allow the user to stop the computation and gracefully return the best result found up to that point. N.B.: Cancellation is not immediate; the in-progress generation finishes. + `current_minimum_cost`: An optional atomic variable to store the current minimum cost during optimization. This allows developers to (e.g.) plot the progress of the minimization over time and in conjunction with the `cancellation` argument allow halting the computation when the progress stagnates. + `queries`: An optional vector to store intermediate results during optimization. This is useful for debugging and perhaps volume rendering of the objective function after the calculation is complete. + +Returns: + +The argument vector corresponding to the minimum cost found by the optimization. + +N.B.: The termination criteria is an "OR", not an "AND". +So if the maximum generations is hit, the iteration stops, even if (say) a `value_to_reach` has not been attained. + +If you want more observability into what the optimization is doing, compile with `-DBOOST_MATH_DEBUG_JSO=1` + +[h4:examples Examples] + +An example exhibiting graceful cancellation and progress observability can be studied in [@../../example/jso_example.cpp jso_example.cpp]. + +[h4:references References] + +* Brest, Janez, Mirjam Sepesy Maučec, and Borko Bošković. ['Single objective real-parameter optimization: Algorithm jSO.] 2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017. + +[endsect] [/section:jso jSO] diff --git a/example/jso_example.cpp b/example/jso_example.cpp new file mode 100644 index 0000000000..b517bbdc7f --- /dev/null +++ b/example/jso_example.cpp @@ -0,0 +1,76 @@ +/* + * Copyright Nick Thompson, 2024 + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ +#if __APPLE__ || __linux__ +#include +#include +#include +#include +#include +#include +#include + +using boost::math::optimization::jso_parameters; +using boost::math::optimization::jso; +using namespace std::chrono_literals; + +template Real rastrigin(std::vector const &v) { + using std::cos; + using boost::math::constants::two_pi; + Real A = 10; + Real y = 10 * v.size(); + for (auto x : v) { + y += x * x - A * cos(two_pi() * x); + } + return y; +} + +std::atomic cancel = false; + +void ctrl_c_handler(int){ + cancel = true; + std::cout << "Cancellation requested-this could take a second . . ." << std::endl; +} + +int main() { + std::cout << "Running jSO on Rastrigin function (global minimum = (0,0,...,0))\n"; + signal(SIGINT, ctrl_c_handler); + using ArgType = std::vector; + auto jso_params = jso_parameters(); + jso_params.lower_bounds.resize(500, -5.12); + jso_params.upper_bounds.resize(500, 5.12); + jso_params.initial_population_size = 5000; + jso_params.max_function_evaluations = 10000000; + std::mt19937_64 gen(34567); + + // By definition, the value of the function which a target value is provided must be <= target_value. + double target_value = 1e-3; + std::atomic current_minimum_cost; + std::cout << "Hit ctrl-C to gracefully terminate the optimization." << std::endl; + auto f = [&]() { + return jso(rastrigin, jso_params, gen, target_value, &cancel, ¤t_minimum_cost); + }; + auto future = std::async(std::launch::async, f); + std::future_status status = future.wait_for(3ms); + while (!cancel && (status != std::future_status::ready)) { + status = future.wait_for(3ms); + std::cout << "Current cost is " << current_minimum_cost << "\r"; + } + + auto local_minima = future.get(); + std::cout << "Local minimum is {"; + for (size_t i = 0; i < local_minima.size() - 1; ++i) { + std::cout << local_minima[i] << ", "; + } + std::cout << local_minima.back() << "}.\n"; + std::cout << "Final cost: " << current_minimum_cost << "\n"; +} +#else +#warning "Signal handling for the jSO example only works on Linux and Mac." +int main() { + return 0; +} +#endif diff --git a/include/boost/math/optimization/detail/common.hpp b/include/boost/math/optimization/detail/common.hpp index 9cf0a884d0..5853c26f8f 100644 --- a/include/boost/math/optimization/detail/common.hpp +++ b/include/boost/math/optimization/detail/common.hpp @@ -161,5 +161,36 @@ template std::vector best_indices(std::vector cons return indices; } +template +auto weighted_lehmer_mean(RandomAccessContainer const & values, RandomAccessContainer const & weights) { + if (values.size() != weights.size()) { + std::ostringstream oss; + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": There must be the same number of weights as values, but got " << values.size() << " values and " << weights.size() << " weights."; + throw std::logic_error(oss.str()); + } + if (values.size() == 0) { + std::ostringstream oss; + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": There must at least one value provided."; + throw std::logic_error(oss.str()); + } + using Real = typename RandomAccessContainer::value_type; + Real numerator = 0; + Real denominator = 0; + for (size_t i = 0; i < values.size(); ++i) { + if (weights[i] < 0 || !std::isfinite(weights[i])) { + std::ostringstream oss; + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": All weights must be positive and finite, but got received weight " << weights[i] << " at index " << i << " of " << weights.size() << "."; + throw std::domain_error(oss.str()); + } + Real tmp = weights[i]*values[i]; + numerator += tmp*values[i]; + denominator += tmp; + } + return numerator/denominator; +} + } // namespace boost::math::optimization::detail #endif diff --git a/include/boost/math/optimization/jso.hpp b/include/boost/math/optimization/jso.hpp new file mode 100644 index 0000000000..29212fdad8 --- /dev/null +++ b/include/boost/math/optimization/jso.hpp @@ -0,0 +1,474 @@ +/* + * Copyright Nick Thompson, 2024 + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ +#ifndef BOOST_MATH_OPTIMIZATION_JSO_HPP +#define BOOST_MATH_OPTIMIZATION_JSO_HPP +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace boost::math::optimization { + +#ifndef BOOST_MATH_DEBUG_JSO +#define BOOST_MATH_DEBUG_JSO 0 +#endif +// Follows: Brest, Janez, Mirjam Sepesy Maucec, and Borko Boskovic. "Single +// objective real-parameter optimization: Algorithm jSO." 2017 IEEE congress on +// evolutionary computation (CEC). IEEE, 2017. In the sequel, this wil be +// referred to as "the reference". Note that the reference is rather difficult +// to understand without also reading: Zhang, J., & Sanderson, A. C. (2009). +// JADE: adaptive differential evolution with optional external archive. +// IEEE Transactions on evolutionary computation, 13(5), 945-958." +template struct jso_parameters { + using Real = typename ArgumentContainer::value_type; + ArgumentContainer lower_bounds; + ArgumentContainer upper_bounds; + // Population in the first generation. + // This defaults to 0, which indicates "use the default specified in the + // referenced paper". To wit, initial population size + // =ceil(25log(D+1)sqrt(D)), where D is the dimension of the problem. + size_t initial_population_size = 0; + // Maximum number of function evaluations. + // The default of 0 indicates "use max_function_evaluations = 10,000D", where + // D is the dimension of the problem. + size_t max_function_evaluations = 0; + size_t threads = std::thread::hardware_concurrency(); + ArgumentContainer const *initial_guess = nullptr; +}; + +template +void validate_jso_parameters(jso_parameters &jso_params) { + using std::isfinite; + using std::isnan; + std::ostringstream oss; + if (jso_params.threads == 0) { + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": Requested zero threads to perform the calculation, but at least " + "1 is required."; + throw std::invalid_argument(oss.str()); + } + detail::validate_bounds(jso_params.lower_bounds, jso_params.upper_bounds); + auto const dimension = jso_params.lower_bounds.size(); + if (jso_params.initial_population_size == 0) { + // Ever so slightly different than the reference-the dimension can be 1, + // but if we followed the reference, the population size would then be zero. + jso_params.initial_population_size = static_cast( + std::ceil(25 * std::log(dimension + 1.0) * sqrt(dimension))); + } + if (jso_params.max_function_evaluations == 0) { + // Recommended value from the reference: + jso_params.max_function_evaluations = 10000 * dimension; + } + if (jso_params.initial_population_size < 4) { + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": The population size must be at least 4, but requested population " + "size of " + << jso_params.initial_population_size << "."; + throw std::invalid_argument(oss.str()); + } + if (jso_params.threads > jso_params.initial_population_size) { + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << ": There must be more individuals in the population than threads."; + throw std::invalid_argument(oss.str()); + } + if (jso_params.initial_guess) { + detail::validate_initial_guess(*jso_params.initial_guess, + jso_params.lower_bounds, + jso_params.upper_bounds); + } +} + +template +ArgumentContainer +jso(const Func cost_function, jso_parameters &jso_params, + URBG &gen, + std::invoke_result_t target_value = + std::numeric_limits< + std::invoke_result_t>::quiet_NaN(), + std::atomic *cancellation = nullptr, + std::atomic> + *current_minimum_cost = nullptr, + std::vector>> + *queries = nullptr) { + using Real = typename ArgumentContainer::value_type; + validate_jso_parameters(jso_params); + + using ResultType = std::invoke_result_t; + using std::abs; + using std::cauchy_distribution; + using std::clamp; + using std::isnan; + using std::max; + using std::round; + using std::uniform_real_distribution; + + // Refer to the referenced paper, pseudocode on page 1313: + // Algorithm 1, jSO, Line 1: + std::vector archive; + + // Algorithm 1, jSO, Line 2 + // "Initialize population P_g = (x_0,g, ..., x_{np-1},g) randomly. + auto population = detail::random_initial_population( + jso_params.lower_bounds, jso_params.upper_bounds, + jso_params.initial_population_size, gen); + if (jso_params.initial_guess) { + population[0] = *jso_params.initial_guess; + } + size_t dimension = jso_params.lower_bounds.size(); + // Don't force the user to initialize to sane value: + if (current_minimum_cost) { + *current_minimum_cost = std::numeric_limits::infinity(); + } + std::atomic target_attained = false; + std::vector cost(jso_params.initial_population_size, + std::numeric_limits::quiet_NaN()); + for (size_t i = 0; i < cost.size(); ++i) { + cost[i] = cost_function(population[i]); + if (!isnan(target_value) && cost[i] <= target_value) { + target_attained = true; + } + if (current_minimum_cost && cost[i] < *current_minimum_cost) { + *current_minimum_cost = cost[i]; + } + if (queries) { + queries->push_back(std::make_pair(population[i], cost[i])); + } + } + std::vector indices = detail::best_indices(cost); + assert(indices.size() == cost.size()); + assert(indices.size() == population.size()); + std::atomic function_evaluations = population.size(); +#if BOOST_MATH_DEBUG_JSO + { + auto const &min_cost = cost[indices[0]]; + auto const &location = population[indices[0]]; + std::cout << __FILE__ << ":" << __LINE__ << ":" << __func__; + std::cout << "\n\tMinimum cost after evaluation of initial random " + "population of size " + << population.size() << " is " << min_cost << "." + << "\n\tLocation {"; + for (size_t i = 0; i < location.size() - 1; ++i) { + std::cout << location[i] << ", "; + } + std::cout << location.back() << "}.\n"; + } +#endif + // Algorithm 1: jSO algorithm, Line 3: + // "Set all values in M_F to 0.5": + // I believe this is a typo: Compare with "Section B. Experimental Results", + // last bullet, which claims this should be set to 0.3. The reference + // implementation also does 0.3: + size_t H = 5; + std::vector M_F(H, 0.3); + // Algorithm 1: jSO algorithm, Line 4: + // "Set all values in M_CR to 0.8": + std::vector M_CR(H, 0.8); + + std::uniform_real_distribution unif01(Real(0), Real(1)); + bool keep_going = !target_attained; + if (cancellation && *cancellation) { + keep_going = false; + } + // k from: + // http://metahack.org/CEC2014-Tanabe-Fukunaga.pdf, Algorithm 1: + // Determines where Lehmer means are stored in the memory: + size_t k = 0; + size_t minimum_population_size = (max)(size_t(4), size_t(jso_params.threads)); + while (keep_going) { + assert(indices.size() == cost.size()); + assert(indices.size() == population.size()); + // Algorithm 1, jSO, Line 7: + std::vector S_CR; + std::vector S_F; + // Equation 9 of L-SHADE: + std::vector delta_f; + for (size_t i = 0; i < population.size(); ++i) { + // Algorithm 1, jSO, Line 9: + auto ri = gen() % H; + // Algorithm 1, jSO, Line 10-13: + // Again, what is written in the pseudocode is not quite right. + // What they mean is mu_F = 0.9-the historical memory is not used. + // I confess I find it weird to store the historical memory if we're just + // gonna ignore it, but that's what the paper and the reference + // implementation says! + Real mu_F = 0.9; + Real mu_CR = 0.9; + if (ri != H - 1) { + mu_F = M_F[ri]; + mu_CR = M_CR[ri]; + } + // Algorithm 1, jSO, Line 14-18: + Real crossover_probability = 0.0; + if (mu_CR >= 0) { + using std::normal_distribution; + normal_distribution normal(mu_CR, 0.1); + crossover_probability = normal(gen); + // Clamp comes from L-SHADE description: + crossover_probability = clamp(crossover_probability, Real(0), Real(1)); + } + // Algorithm 1, jSO, Line 19-23: + // Note that the pseudocode uses a "max_generations parameter", + // but the reference implementation does not. + // Since we already require specification of max_function_evaluations, + // the pseudocode adds an unnecessary parameter. + if (4 * function_evaluations < jso_params.max_function_evaluations) { + crossover_probability = (max)(crossover_probability, Real(0.7)); + } else if (2 * function_evaluations < + jso_params.max_function_evaluations) { + crossover_probability = (max)(crossover_probability, Real(0.6)); + } + + // Algorithm 1, jSO, Line 24-27: + // Note the adjustments to the pseudocode given in the reference + // implementation. + cauchy_distribution cauchy(mu_F, 0.1); + Real F; + do { + F = cauchy(gen); + if (F > 1) { + F = 1; + } + } while (F <= 0); + Real threshold = static_cast(7) / static_cast(10); + if ((10 * function_evaluations < + 6 * jso_params.max_function_evaluations) && + (F > threshold)) { + F = threshold; + } + // > p value for mutation strategy linearly decreases from pmax to pmin + // during the evolutionary process, > where pmax = 0.25 in jSO and pmin = + // pmax/2. + Real p = Real(0.25) * (1 - static_cast(function_evaluations) / + (2 * jso_params.max_function_evaluations)); + // Equation (4) of the reference: + Real Fw = 1.2 * F; + if (10 * function_evaluations < 4 * jso_params.max_function_evaluations) { + if (10 * function_evaluations < + 2 * jso_params.max_function_evaluations) { + Fw = 0.7 * F; + } else { + Fw = 0.8 * F; + } + } + // Algorithm 1, jSO, Line 28: + // "ui,g := current-to-pBest-w/1/bin using Eq. (3)" + // This is not explained in the reference, but "current-to-pBest" + // strategy means "select randomly among the best values available." + // See: + // Zhang, J., & Sanderson, A. C. (2009). + // JADE: adaptive differential evolution with optional external archive. + // IEEE Transactions on evolutionary computation, 13(5), 945-958. + // > As a generalization of DE/current-to- best, + // > DE/current-to-pbest utilizes not only the best solution information + // > but also the information of other good solutions. + // > To be specific, any of the top 100p%, p in (0, 1], + // > solutions can be randomly chosen in DE/current-to-pbest to play the + // role > designed exclusively for the single best solution in + // DE/current-to-best." + size_t max_p_index = static_cast(std::ceil(p * indices.size())); + size_t p_best_idx = gen() % max_p_index; + // We now need r1, r2 so that r1 != r2 != i: + size_t r1; + do { + r1 = gen() % population.size(); + } while (r1 == i); + size_t r2; + do { + r2 = gen() % (population.size() + archive.size()); + } while (r2 == r1 || r2 == i); + + ArgumentContainer trial_vector; + if constexpr (detail::has_resize_v) { + trial_vector.resize(dimension); + } + auto const &xi = population[i]; + auto const &xr1 = population[r1]; + ArgumentContainer xr2; + if (r2 < population.size()) { + xr2 = population[r2]; + } else { + xr2 = archive[r2 - population.size()]; + } + auto const &x_p_best = population[p_best_idx]; + for (size_t j = 0; j < dimension; ++j) { + auto guaranteed_changed_idx = gen() % dimension; + if (unif01(gen) < crossover_probability || + j == guaranteed_changed_idx) { + auto tmp = xi[j] + Fw * (x_p_best[j] - xi[j]) + F * (xr1[j] - xr2[j]); + auto const &lb = jso_params.lower_bounds[j]; + auto const &ub = jso_params.upper_bounds[j]; + // Some others recommend regenerating the indices rather than + // clamping; I dunno seems like it could get stuck regenerating . . . + // Another suggestion is provided in: + // "JADE: Adaptive Differential Evolution with Optional External + // Archive" page 947. Perhaps we should implement it! + trial_vector[j] = clamp(tmp, lb, ub); + } else { + trial_vector[j] = population[i][j]; + } + } + auto trial_cost = cost_function(trial_vector); + function_evaluations++; + if (isnan(trial_cost)) { + continue; + } + if (queries) { + queries->push_back(std::make_pair(trial_vector, trial_cost)); + } + + // Successful trial: + if (trial_cost < cost[i] || isnan(cost[i])) { + if (!isnan(target_value) && trial_cost <= target_value) { + target_attained = true; + } + if (current_minimum_cost && trial_cost < *current_minimum_cost) { + *current_minimum_cost = trial_cost; + } + // Can't decide on improvement if the previous evaluation was a NaN: + if (!isnan(cost[i])) { + if (crossover_probability > 1 || crossover_probability < 0) { + throw std::domain_error("Crossover probability is weird."); + } + if (F > 1 || F < 0) { + throw std::domain_error("Scale factor (F) is weird."); + } + S_CR.push_back(crossover_probability); + S_F.push_back(F); + delta_f.push_back(abs(cost[i] - trial_cost)); + } + // Build the historical archive: + if (archive.size() < cost.size()) { + archive.push_back(trial_vector); + } else { + // If it's already built, then put the successful trial in a random index: + archive.resize(cost.size()); + auto idx = gen() % archive.size(); + archive[idx] = trial_vector; + } + cost[i] = trial_cost; + population[i] = trial_vector; + } + } + + assert(indices.size() == cost.size()); + assert(indices.size() == population.size()); + indices = detail::best_indices(cost); + assert(indices.size() == cost.size()); + assert(indices.size() == population.size()); + + // If there are no successful updates this generation, we do not update the + // historical memory: + if (S_CR.size() > 0) { + assert(delta_f.size() == S_CR.size()); + assert(S_F.size() == delta_f.size()); + std::vector weights(S_CR.size(), + std::numeric_limits::quiet_NaN()); + ResultType delta_sum = static_cast(0); + for (auto const &delta : delta_f) { + delta_sum += delta; + } + if (delta_sum <= 0 || !std::isfinite(delta_sum)) { + std::ostringstream oss; + oss << __FILE__ << ":" << __LINE__ << ":" << __func__; + oss << "\n\tYou've hit a bug: The sum of improvements must be strictly " + "positive, but got " + << delta_sum << " improvement from " << S_CR.size() + << " successful updates.\n"; + oss << "\tImprovements: {" << std::hexfloat; + for (size_t l = 0; l < delta_f.size() -1; ++l) { + oss << delta_f[l] << ", "; + } + oss << delta_f.back() << "}.\n"; + throw std::logic_error(oss.str()); + } + for (size_t i = 0; i < weights.size(); ++i) { + weights[i] = delta_f[i] / delta_sum; + } + + M_CR[k] = detail::weighted_lehmer_mean(S_CR, weights); + M_F[k] = detail::weighted_lehmer_mean(S_F, weights); + } + k++; + if (k == M_F.size()) { + k = 0; + } + if (target_attained) { + break; + } + if (cancellation && *cancellation) { + break; + } + if (function_evaluations >= jso_params.max_function_evaluations) { + break; + } + // Linear population size reduction: + size_t new_population_size = static_cast(round( + -double(jso_params.initial_population_size - minimum_population_size) * + function_evaluations / + static_cast(jso_params.max_function_evaluations) + + jso_params.initial_population_size)); + size_t num_erased = population.size() - new_population_size; + std::vector indices_to_erase(num_erased); + size_t j = 0; + for (size_t i = population.size() - 1; i >= new_population_size; --i) { + indices_to_erase[j++] = indices[i]; + } + std::sort(indices_to_erase.rbegin(), indices_to_erase.rend()); + for (auto const &idx : indices_to_erase) { + population.erase(population.begin() + idx); + cost.erase(cost.begin() + idx); + } + indices.resize(new_population_size); + } + +#if BOOST_MATH_DEBUG_JSO + { + auto const &min_cost = cost[indices[0]]; + auto const &location = population[indices[0]]; + std::cout << __FILE__ << ":" << __LINE__ << ":" << __func__; + std::cout << "\n\tMinimum cost after completion is " << min_cost + << ".\n\tLocation: {"; + for (size_t i = 0; i < location.size() - 1; ++i) { + std::cout << location[i] << ", "; + } + std::cout << location.back() << "}.\n"; + std::cout << "\tRequired " << function_evaluations + << " function calls out of " + << jso_params.max_function_evaluations << " allowed.\n"; + if (target_attained) { + std::cout << "\tReason for return: Target value attained.\n"; + } + std::cout << "\tHistorical crossover probabilities (M_CR): {"; + for (size_t i = 0; i < M_CR.size() - 1; ++i) { + std::cout << M_CR[i] << ", "; + } + std::cout << M_CR.back() << "}.\n"; + std::cout << "\tHistorical scale factors (M_F): {"; + for (size_t i = 0; i < M_F.size() - 1; ++i) { + std::cout << M_F[i] << ", "; + } + std::cout << M_F.back() << "}.\n"; + std::cout << "\tFinal population size: " << population.size() << ".\n"; + } +#endif + return population[indices[0]]; +} + +} // namespace boost::math::optimization +#endif diff --git a/test/Jamfile.v2 b/test/Jamfile.v2 index f40aa6b9b8..78637fe99c 100644 --- a/test/Jamfile.v2 +++ b/test/Jamfile.v2 @@ -1256,6 +1256,7 @@ test-suite interpolators : [ run compile_test/interpolators_catmull_rom_concept_test.cpp compile_test_main : : : [ requires cxx11_hdr_array cxx11_hdr_initializer_list ] ] [ run test_standalone_asserts.cpp ] [ run differential_evolution_test.cpp : : : [ requires cxx17_if_constexpr cxx17_std_apply ] ] + [ run jso_test.cpp : : : [ requires cxx17_if_constexpr cxx17_std_apply ] ] ; test-suite quadrature : diff --git a/test/jso_test.cpp b/test/jso_test.cpp new file mode 100644 index 0000000000..8085ec95cf --- /dev/null +++ b/test/jso_test.cpp @@ -0,0 +1,158 @@ +/* + * Copyright Nick Thompson, 2024 + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ + +#include "math_unit_test.hpp" +#include "test_functions_for_optimization.hpp" +#include +#include +#include + +using boost::math::optimization::jso; +using boost::math::optimization::jso_parameters; +using boost::math::optimization::detail::weighted_lehmer_mean; + +void test_weighted_lehmer_mean() { + size_t n = 50; + std::vector weights(n, 1.0); + std::vector values(n, 2.5); + // Technically, this is not a fully general weighted Lehmer mean, + // but just a weighted contraharmonic mean. + // So we have a few more invariants available to us: + CHECK_ULP_CLOSE(2.5, weighted_lehmer_mean(values, weights), n); + std::mt19937_64 gen(12345); + std::uniform_real_distribution unif(std::numeric_limits::epsilon(),1); + for (size_t i = 0; i < n; ++i) { + weights[i] = unif(gen); + values[i] = unif(gen); + } + auto mean = weighted_lehmer_mean(values, weights); + CHECK_LE(mean, 1.0); + CHECK_LE(std::numeric_limits::epsilon(), mean); +} + +template void test_ackley() { + std::cout << "Testing jSO on Ackley function . . .\n"; + using ArgType = std::array; + auto jso_params = jso_parameters(); + jso_params.lower_bounds = {-5, -5}; + jso_params.upper_bounds = {5, 5}; + + std::mt19937_64 gen(12345); + auto local_minima = jso(ackley, jso_params, gen); + CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits::epsilon()); + CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits::epsilon()); + + // Does it work with a lambda? + auto ack = [](std::array const &x) { return ackley(x); }; + local_minima = jso(ack, jso_params, gen); + CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits::epsilon()); + CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits::epsilon()); + + // Test that if an intial guess is the exact solution, the returned solution is the exact solution: + std::array initial_guess{0, 0}; + jso_params.initial_guess = &initial_guess; + local_minima = jso(ack, jso_params, gen); + CHECK_EQUAL(local_minima[0], Real(0)); + CHECK_EQUAL(local_minima[1], Real(0)); +} + +template void test_rosenbrock_saddle() { + std::cout << "Testing jSO on Rosenbrock saddle . . .\n"; + using ArgType = std::array; + auto jso_params = jso_parameters(); + jso_params.lower_bounds = {0.5, 0.5}; + jso_params.upper_bounds = {2.048, 2.048}; + std::mt19937_64 gen(234568); + auto local_minima = jso(rosenbrock_saddle, jso_params, gen); + + CHECK_ABSOLUTE_ERROR(Real(1), local_minima[0], 10 * std::numeric_limits::epsilon()); + CHECK_ABSOLUTE_ERROR(Real(1), local_minima[1], 10 * std::numeric_limits::epsilon()); + + // Does cancellation work? + std::atomic cancel = true; + gen.seed(12345); + local_minima = + jso(rosenbrock_saddle, jso_params, gen, std::numeric_limits::quiet_NaN(), &cancel); + CHECK_GE(std::abs(local_minima[0] - Real(1)), std::sqrt(std::numeric_limits::epsilon())); +} + + + +template void test_rastrigin() { + std::cout << "Testing jSO on Rastrigin function (global minimum = (0,0,...,0))\n"; + using ArgType = std::vector; + auto jso_params = jso_parameters(); + jso_params.lower_bounds.resize(3, static_cast(-5.12)); + jso_params.upper_bounds.resize(3, static_cast(5.12)); + jso_params.initial_population_size = 5000; + jso_params.max_function_evaluations = 1000000; + std::mt19937_64 gen(34567); + + // By definition, the value of the function which a target value is provided must be <= target_value. + Real target_value = 1e-3; + auto local_minima = jso(rastrigin, jso_params, gen, target_value); + CHECK_LE(rastrigin(local_minima), target_value); +} + +// Tests NaN return types and return type != input type: +void test_sphere() { + std::cout << "Testing jSO on sphere . . .\n"; + using ArgType = std::vector; + auto jso_params = jso_parameters(); + jso_params.lower_bounds.resize(8, -1); + jso_params.upper_bounds.resize(8, 1); + std::mt19937_64 gen(56789); + auto local_minima = jso(sphere, jso_params, gen); + for (auto x : local_minima) { + CHECK_ABSOLUTE_ERROR(0.0f, x, 2e-4f); + } +} + +template +void test_three_hump_camel() { + std::cout << "Testing jSO on three hump camel . . .\n"; + using ArgType = std::array; + auto jso_params = jso_parameters(); + jso_params.lower_bounds[0] = -5.0; + jso_params.lower_bounds[1] = -5.0; + jso_params.upper_bounds[0] = 5.0; + jso_params.upper_bounds[1] = 5.0; + std::mt19937_64 gen(56789); + auto local_minima = jso(three_hump_camel, jso_params, gen); + for (auto x : local_minima) { + CHECK_ABSOLUTE_ERROR(0.0f, x, 2e-4f); + } +} + +template +void test_beale() { + std::cout << "Testing jSO on the Beale function . . .\n"; + using ArgType = std::array; + auto jso_params = jso_parameters(); + jso_params.lower_bounds[0] = -5.0; + jso_params.lower_bounds[1] = -5.0; + jso_params.upper_bounds[0]= 5.0; + jso_params.upper_bounds[1]= 5.0; + std::mt19937_64 gen(56789); + auto local_minima = jso(beale, jso_params, gen); + CHECK_ABSOLUTE_ERROR(Real(3), local_minima[0], Real(2e-4)); + CHECK_ABSOLUTE_ERROR(Real(1)/Real(2), local_minima[1], Real(2e-4)); +} + +int main() { +#if defined(__clang__) || defined(_MSC_VER) + test_ackley(); + test_ackley(); + test_rosenbrock_saddle(); + test_rastrigin(); + test_three_hump_camel(); + test_beale(); +#endif + test_sphere(); + test_weighted_lehmer_mean(); + return boost::math::test::report_errors(); +}