forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUGM_chain.cpp
96 lines (76 loc) · 2.94 KB
/
UGM_chain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file UGM_chain.cpp
* @brief UGM (undirected graphical model) examples: chain
* @author Frank Dellaert
* @author Abhijit Kundu
*
* See http://www.di.ens.fr/~mschmidt/Software/UGM/chain.html
* for more explanation. This code demos the same example using GTSAM.
*/
#include <gtsam/base/timing.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// Set Number of Nodes in the Graph
const int nrNodes = 60;
// Each node takes 1 of 7 possible states denoted by 0-6 in following order:
// ["VideoGames" "Industry" "GradSchool" "VideoGames(with PhD)"
// "Industry(with PhD)" "Academia" "Deceased"]
const size_t nrStates = 7;
// define variables
vector<DiscreteKey> nodes;
for (int i = 0; i < nrNodes; i++) {
DiscreteKey dk(i, nrStates);
nodes.push_back(dk);
}
// create graph
DiscreteFactorGraph graph;
// add node potentials
graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
const std::string edgePotential =
".08 .9 .01 0 0 0 .01 "
".03 .95 .01 0 0 0 .01 "
".06 .06 .75 .05 .05 .02 .01 "
"0 0 0 .3 .6 .09 .01 "
"0 0 0 .02 .95 .02 .01 "
"0 0 0 .01 .01 .97 .01 "
"0 0 0 0 0 0 1";
// add edge potentials
for (int i = 0; i < nrNodes - 1; i++)
graph.add(nodes[i] & nodes[i + 1], edgePotential);
cout << "Created Factor Graph with " << nrNodes << " variable nodes and "
<< graph.size() << " factors (Unary+Edge).";
// "Decoding", i.e., configuration with largest value
// We use sequential variable elimination
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
// "Inference" Computing marginals for each node
// Here we'll make use of DiscreteMarginals class, which makes use of
// bayes-tree based shortcut evaluation of marginals
DiscreteMarginals marginals(graph);
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
gttic_(Multifrontal);
for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
++it) {
// Compute the marginal
Vector margProbs = marginals.marginalProbabilities(*it);
// Print the marginals
cout << "Node#" << setw(4) << it->first << " : ";
print(margProbs);
}
gttoc_(Multifrontal);
tictoc_print_();
return 0;
}