forked from dapowan/LIMU-BERT-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
166 lines (145 loc) · 6.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/9/16 11:22
# @Author : Huatao
# @Email : [email protected]
# @File : train.py
# @Description :
import copy
import os
import time
import numpy as np
import torch
import torch.nn as nn
from utils import count_model_parameters
class Trainer(object):
"""Training Helper Class"""
def __init__(self, cfg, model, optimizer, save_path, device):
self.cfg = cfg # config for training : see class Config
self.model = model
self.optimizer = optimizer
self.save_path = save_path
self.device = device # device name
def pretrain(self, func_loss, func_forward, func_evaluate
, data_loader_train, data_loader_test, model_file=None, data_parallel=False):
""" Train Loop """
self.load(model_file)
model = self.model.to(self.device)
if data_parallel: # use Data Parallelism with Multi-GPU
model = nn.DataParallel(model)
global_step = 0 # global iteration steps regardless of epochs
best_loss = 1e6
model_best = model.state_dict()
for e in range(self.cfg.n_epochs):
loss_sum = 0. # the sum of iteration losses to get average loss in every epoch
time_sum = 0.0
self.model.train()
for i, batch in enumerate(data_loader_train):
batch = [t.to(self.device) for t in batch]
start_time = time.time()
self.optimizer.zero_grad()
loss = func_loss(model, batch)
loss = loss.mean()# mean() for Data Parallelism
loss.backward()
self.optimizer.step()
time_sum += time.time() - start_time
global_step += 1
loss_sum += loss.item()
# if global_step % self.cfg.save_steps == 0: # save
# self.save(global_step)
if self.cfg.total_steps and self.cfg.total_steps < global_step:
print('The Total Steps have been reached.')
return
# print(i)
loss_eva = self.run(func_forward, func_evaluate, data_loader_test)
print('Epoch %d/%d : Average Loss %5.4f. Test Loss %5.4f'
% (e + 1, self.cfg.n_epochs, loss_sum / len(data_loader_train), loss_eva))
# print("Train execution time: %.5f seconds" % (time_sum / len(self.data_loader)))
if loss_eva < best_loss:
best_loss = loss_eva
model_best = copy.deepcopy(model.state_dict())
self.save(0)
model.load_state_dict(model_best)
print('The Total Epoch have been reached.')
# self.save(global_step)
def run(self, func_forward, func_evaluate, data_loader, model_file=None, data_parallel=False, load_self=False):
""" Evaluation Loop """
self.model.eval() # evaluation mode
self.load(model_file, load_self=load_self)
# print(count_model_parameters(self.model))
model = self.model.to(self.device)
if data_parallel: # use Data Parallelism with Multi-GPU
model = nn.DataParallel(model)
results = [] # prediction results
labels = []
time_sum = 0.0
for batch in data_loader:
batch = [t.to(self.device) for t in batch]
with torch.no_grad(): # evaluation without gradient calculation
start_time = time.time()
result, label = func_forward(model, batch)
time_sum += time.time() - start_time
results.append(result)
labels.append(label)
# print("Eval execution time: %.5f seconds" % (time_sum / len(dt)))
if func_evaluate:
return func_evaluate(torch.cat(labels, 0), torch.cat(results, 0))
else:
return torch.cat(results, 0).cpu().numpy()
def train(self, func_loss, func_forward, func_evaluate, data_loader_train, data_loader_test, data_loader_vali
, model_file=None, data_parallel=False, load_self=False):
""" Train Loop """
self.load(model_file, load_self)
model = self.model.to(self.device)
if data_parallel: # use Data Parallelism with Multi-GPU
model = nn.DataParallel(model)
global_step = 0 # global iteration steps regardless of epochs
vali_acc_best = 0.0
best_stat = None
model_best = model.state_dict()
for e in range(self.cfg.n_epochs):
loss_sum = 0.0 # the sum of iteration losses to get average loss in every epoch
time_sum = 0.0
self.model.train()
for i, batch in enumerate(data_loader_train):
batch = [t.to(self.device) for t in batch]
start_time = time.time()
self.optimizer.zero_grad()
loss = func_loss(model, batch)
loss = loss.mean()# mean() for Data Parallelism
loss.backward()
self.optimizer.step()
global_step += 1
loss_sum += loss.item()
time_sum += time.time() - start_time
if self.cfg.total_steps and self.cfg.total_steps < global_step:
print('The Total Steps have been reached.')
return
train_acc, train_f1 = self.run(func_forward, func_evaluate, data_loader_train)
test_acc, test_f1 = self.run(func_forward, func_evaluate, data_loader_test)
vali_acc, vali_f1 = self.run(func_forward, func_evaluate, data_loader_vali)
print('Epoch %d/%d : Average Loss %5.4f, Accuracy: %0.3f/%0.3f/%0.3f, F1: %0.3f/%0.3f/%0.3f'
% (e+1, self.cfg.n_epochs, loss_sum / len(data_loader_train), train_acc, vali_acc, test_acc, train_f1, vali_f1, test_f1))
# print("Train execution time: %.5f seconds" % (time_sum / len(self.data_loader)))
if vali_acc > vali_acc_best:
vali_acc_best = vali_acc
best_stat = (train_acc, vali_acc, test_acc, train_f1, vali_f1, test_f1)
model_best = copy.deepcopy(model.state_dict())
self.save(0)
self.model.load_state_dict(model_best)
print('The Total Epoch have been reached.')
print('Best Accuracy: %0.3f/%0.3f/%0.3f, F1: %0.3f/%0.3f/%0.3f' % best_stat)
def load(self, model_file, load_self=False):
""" load saved model or pretrained transformer (a part of model) """
if model_file:
print('Loading the model from', model_file)
if load_self:
self.model.load_self(model_file + '.pt', map_location=self.device)
else:
self.model.load_state_dict(torch.load(model_file + '.pt', map_location=self.device))
def save(self, i=0):
""" save current model """
if i != 0:
torch.save(self.model.state_dict(), self.save_path + "_" + str(i) + '.pt')
else:
torch.save(self.model.state_dict(), self.save_path + '.pt')