forked from dapowan/LIMU-BERT-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
490 lines (402 loc) · 18.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/9/16 11:22
# @Author : Huatao
# @Email : [email protected]
# @File : utils.py
# @Description :
import argparse
from scipy.special import factorial
from torch.utils.data import Dataset
from config import create_io_config, load_dataset_stats, TrainConfig, MaskConfig, load_model_config
""" Utils Functions """
import random
import numpy as np
import torch
import sys
def set_seeds(seed):
"set random seeds"
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def get_device(gpu):
"get device (CPU or GPU)"
if gpu is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cuda:" + gpu if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("%s (%d GPUs)" % (device, n_gpu))
return device
def split_last(x, shape):
"split the last dimension to given shape"
shape = list(shape)
assert shape.count(-1) <= 1
if -1 in shape:
shape[shape.index(-1)] = x.size(-1) // -np.prod(shape)
return x.view(*x.size()[:-1], *shape)
def merge_last(x, n_dims):
"merge the last n_dims to a dimension"
s = x.size()
assert n_dims > 1 and n_dims < len(s)
return x.view(*s[:-n_dims], -1)
def bert_mask(seq_len, goal_num_predict):
return random.sample(range(seq_len), goal_num_predict)
def span_mask(seq_len, max_gram=3, p=0.2, goal_num_predict=15):
ngrams = np.arange(1, max_gram + 1, dtype=np.int64)
pvals = p * np.power(1 - p, np.arange(max_gram))
# alpha = 6
# pvals = np.power(alpha, ngrams) * np.exp(-alpha) / factorial(ngrams)# possion
pvals /= pvals.sum(keepdims=True)
mask_pos = set()
while len(mask_pos) < goal_num_predict:
n = np.random.choice(ngrams, p=pvals)
n = min(n, goal_num_predict - len(mask_pos))
anchor = np.random.randint(seq_len)
if anchor in mask_pos:
continue
for i in range(anchor, min(anchor + n, seq_len - 1)):
mask_pos.add(i)
return list(mask_pos)
def merge_dataset(data, label, mode='all'):
index = np.zeros(data.shape[0], dtype=bool)
label_new = []
for i in range(label.shape[0]):
if mode == 'all':
temp_label = np.unique(label[i])
if temp_label.size == 1:
index[i] = True
label_new.append(label[i, 0])
elif mode == 'any':
index[i] = True
if np.any(label[i] > 0):
temp_label = np.unique(label[i])
if temp_label.size == 1:
label_new.append(temp_label[0])
else:
label_new.append(temp_label[1])
else:
label_new.append(0)
else:
index[i] = ~index[i]
label_new.append(label[i, 0])
# print('Before Merge: %d, After Merge: %d' % (data.shape[0], np.sum(index)))
return data[index], np.array(label_new)
def reshape_data(data, merge):
if merge == 0:
return data.reshape(data.shape[0] * data.shape[1], data.shape[2])
else:
return data.reshape(data.shape[0] * data.shape[1] // merge, merge, data.shape[2])
def reshape_label(label, merge):
if merge == 0:
return label.reshape(label.shape[0] * label.shape[1])
else:
return label.reshape(label.shape[0] * label.shape[1] // merge, merge)
def shuffle_data_label(data, label):
index = np.arange(data.shape[0])
np.random.shuffle(index)
return data[index, ...], label[index, ...]
def prepare_pretrain_dataset(data, labels, training_rate, seed=None):
set_seeds(seed)
data_train, label_train, data_vali, label_vali, data_test, label_test = partition_and_reshape(data, labels, label_index=0
, training_rate=training_rate, vali_rate=0.1
, change_shape=False)
return data_train, label_train, data_vali, label_vali
def prepare_classifier_dataset(data, labels, label_index=0, training_rate=0.8, label_rate=1.0, change_shape=True
, merge=0, merge_mode='all', seed=None, balance=False):
set_seeds(seed)
data_train, label_train, data_vali, label_vali, data_test, label_test \
= partition_and_reshape(data, labels, label_index=label_index, training_rate=training_rate, vali_rate=0.1
, change_shape=change_shape, merge=merge, merge_mode=merge_mode)
set_seeds(seed)
if balance:
data_train_label, label_train_label, _, _ \
= prepare_simple_dataset_balance(data_train, label_train, training_rate=label_rate)
else:
data_train_label, label_train_label, _, _ \
= prepare_simple_dataset(data_train, label_train, training_rate=label_rate)
return data_train_label, label_train_label, data_vali, label_vali, data_test, label_test
def partition_and_reshape(data, labels, label_index=0, training_rate=0.8, vali_rate=0.1, change_shape=True
, merge=0, merge_mode='all', shuffle=True):
arr = np.arange(data.shape[0])
if shuffle:
np.random.shuffle(arr)
data = data[arr]
labels = labels[arr]
train_num = int(data.shape[0] * training_rate)
vali_num = int(data.shape[0] * vali_rate)
data_train = data[:train_num, ...]
data_vali = data[train_num:train_num+vali_num, ...]
data_test = data[train_num+vali_num:, ...]
t = np.min(labels[:, :, label_index])
label_train = labels[:train_num, ..., label_index] - t
label_vali = labels[train_num:train_num+vali_num, ..., label_index] - t
label_test = labels[train_num+vali_num:, ..., label_index] - t
if change_shape:
data_train = reshape_data(data_train, merge)
data_vali = reshape_data(data_vali, merge)
data_test = reshape_data(data_test, merge)
label_train = reshape_label(label_train, merge)
label_vali = reshape_label(label_vali, merge)
label_test = reshape_label(label_test, merge)
if change_shape and merge != 0:
data_train, label_train = merge_dataset(data_train, label_train, mode=merge_mode)
data_test, label_test = merge_dataset(data_test, label_test, mode=merge_mode)
data_vali, label_vali = merge_dataset(data_vali, label_vali, mode=merge_mode)
print('Train Size: %d, Vali Size: %d, Test Size: %d' % (label_train.shape[0], label_vali.shape[0], label_test.shape[0]))
return data_train, label_train, data_vali, label_vali, data_test, label_test
def prepare_simple_dataset(data, labels, training_rate=0.2):
arr = np.arange(data.shape[0])
np.random.shuffle(arr)
data = data[arr]
labels = labels[arr]
train_num = int(data.shape[0] * training_rate)
data_train = data[:train_num, ...]
data_test = data[train_num:, ...]
t = np.min(labels)
label_train = labels[:train_num] - t
label_test = labels[train_num:] - t
labels_unique = np.unique(labels)
label_num = []
for i in range(labels_unique.size):
label_num.append(np.sum(labels == labels_unique[i]))
print('Label Size: %d, Unlabel Size: %d. Label Distribution: %s'
% (label_train.shape[0], label_test.shape[0], ', '.join(str(e) for e in label_num)))
return data_train, label_train, data_test, label_test
def prepare_simple_dataset_balance(data, labels, training_rate=0.8):
labels_unique = np.unique(labels)
label_num = []
for i in range(labels_unique.size):
label_num.append(np.sum(labels == labels_unique[i]))
train_num = min(min(label_num), int(data.shape[0] * training_rate / len(label_num)))
if train_num == min(label_num):
print("Warning! You are using all of label %d." % label_num.index(train_num))
index = np.zeros(data.shape[0], dtype=bool)
for i in range(labels_unique.size):
class_index = np.argwhere(labels == labels_unique[i])
class_index = class_index.reshape(class_index.size)
np.random.shuffle(class_index)
temp = class_index[:train_num]
index[temp] = True
t = np.min(labels)
data_train = data[index, ...]
data_test = data[~index, ...]
label_train = labels[index, ...] - t
label_test = labels[~index, ...] - t
print('Balance Label Size: %d, Unlabel Size: %d; Real Label Rate: %0.3f' % (label_train.shape[0], label_test.shape[0]
, label_train.shape[0] * 1.0 / labels.size))
return data_train, label_train, data_test, label_test
def regularization_loss(model, lambda1, lambda2):
l1_regularization = 0.0
l2_regularization = 0.0
for param in model.parameters():
l1_regularization += torch.norm(param, 1)
l2_regularization += torch.norm(param, 2)
return lambda1 * l1_regularization, lambda2 * l2_regularization
def match_labels(labels, labels_targets):
index = np.zeros(labels.size, dtype=np.bool)
for i in range(labels_targets.size):
index = index | (labels == labels_targets[i])
return index
class Pipeline():
""" Pre-process Pipeline Class : callable """
def __init__(self):
super().__init__()
def __call__(self, instance):
raise NotImplementedError
class Preprocess4Normalization(Pipeline):
""" Pre-processing steps for pretraining transformer """
def __init__(self, feature_len, norm_acc=True, norm_mag=True, gamma=1.0):
super().__init__()
self.feature_len = feature_len
self.norm_acc = norm_acc
self.norm_mag = norm_mag
self.eps = 1e-5
self.acc_norm = 9.8
self.gamma = gamma
def __call__(self, instance):
instance_new = instance.copy()[:, :self.feature_len]
if instance_new.shape[1] >= 6 and self.norm_acc:
instance_new[:, :3] = instance_new[:, :3] / self.acc_norm
if instance_new.shape[1] == 9 and self.norm_mag:
mag_norms = np.linalg.norm(instance_new[:, 6:9], axis=1) + self.eps
mag_norms = np.repeat(mag_norms.reshape(mag_norms.size, 1), 3, axis=1)
instance_new[:, 6:9] = instance_new[:, 6:9] / mag_norms * self.gamma
return instance_new
class Preprocess4Mask:
""" Pre-processing steps for pretraining transformer """
def __init__(self, mask_cfg):
self.mask_ratio = mask_cfg.mask_ratio # masking probability
self.mask_alpha = mask_cfg.mask_alpha
self.max_gram = mask_cfg.max_gram
self.mask_prob = mask_cfg.mask_prob
self.replace_prob = mask_cfg.replace_prob
def gather(self, data, position1, position2):
result = []
for i in range(position1.shape[0]):
result.append(data[position1[i], position2[i]])
return np.array(result)
def mask(self, data, position1, position2):
for i in range(position1.shape[0]):
data[position1[i], position2[i]] = np.zeros(position2[i].size)
return data
def replace(self, data, position1, position2):
for i in range(position1.shape[0]):
data[position1[i], position2[i]] = np.random.random(position2[i].size)
return data
def __call__(self, instance):
shape = instance.shape
# the number of prediction is sometimes less than max_pred when sequence is short
n_pred = max(1, int(round(shape[0] * self.mask_ratio)))
# For masked Language Models
# mask_pos = bert_mask(shape[0], n_pred)
mask_pos = span_mask(shape[0], self.max_gram, goal_num_predict=n_pred)
instance_mask = instance.copy()
if isinstance(mask_pos, tuple):
mask_pos_index = mask_pos[0]
if np.random.rand() < self.mask_prob:
self.mask(instance_mask, mask_pos[0], mask_pos[1])
elif np.random.rand() < self.replace_prob:
self.replace(instance_mask, mask_pos[0], mask_pos[1])
else:
mask_pos_index = mask_pos
if np.random.rand() < self.mask_prob:
instance_mask[mask_pos, :] = np.zeros((len(mask_pos), shape[1]))
elif np.random.rand() < self.replace_prob:
instance_mask[mask_pos, :] = np.random.random((len(mask_pos), shape[1]))
seq = instance[mask_pos_index, :]
return instance_mask, np.array(mask_pos_index), np.array(seq)
class IMUDataset(Dataset):
""" Load sentence pair (sequential or random order) from corpus """
def __init__(self, data, labels, pipeline=[]):
super().__init__()
self.pipeline = pipeline
self.data = data
self.labels = labels
def __getitem__(self, index):
instance = self.data[index]
for proc in self.pipeline:
instance = proc(instance)
return torch.from_numpy(instance).float(), torch.from_numpy(np.array(self.labels[index])).long()
def __len__(self):
return len(self.data)
class FFTDataset(Dataset):
def __init__(self, data, labels, mode=0, pipeline=[]):
super().__init__()
self.pipeline = pipeline
self.data = data
self.labels = labels
self.mode = mode
def __getitem__(self, index):
instance = self.data[index]
for proc in self.pipeline:
instance = proc(instance)
seq = self.preprocess(instance)
return torch.from_numpy(seq), torch.from_numpy(np.array(self.labels[index])).long()
def __len__(self):
return len(self.data)
def preprocess(self, instance):
f = np.fft.fft(instance, axis=0, n=10)
mag = np.abs(f)
phase = np.angle(f)
return np.concatenate([mag, phase], axis=0).astype(np.float32)
class LIBERTDataset4Pretrain(Dataset):
""" Load sentence pair (sequential or random order) from corpus """
def __init__(self, data, pipeline=[]):
super().__init__()
self.pipeline = pipeline
self.data = data
def __getitem__(self, index):
instance = self.data[index]
for proc in self.pipeline:
instance = proc(instance)
mask_seq, masked_pos, seq = instance
return torch.from_numpy(mask_seq), torch.from_numpy(masked_pos).long(), torch.from_numpy(seq)
def __len__(self):
return len(self.data)
def handle_argv(target, config_train, prefix):
parser = argparse.ArgumentParser(description='PyTorch LIMU-BERT Model')
parser.add_argument('model_version', type=str, help='Model config')
parser.add_argument('dataset', type=str, help='Dataset name', choices=['hhar', 'motion', 'uci', 'shoaib'])
parser.add_argument('dataset_version', type=str, help='Dataset version', choices=['10_100', '20_120'])
parser.add_argument('-g', '--gpu', type=str, default=None, help='Set specific GPU')
parser.add_argument('-f', '--model_file', type=str, default=None, help='Pretrain model file')
parser.add_argument('-t', '--train_cfg', type=str, default='./config/' + config_train, help='Training config json file path')
parser.add_argument('-a', '--mask_cfg', type=str, default='./config/mask.json',
help='Mask strategy json file path')
parser.add_argument('-l', '--label_index', type=int, default=-1,
help='Label Index')
parser.add_argument('-s', '--save_model', type=str, default='model',
help='The saved model name')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
model_cfg = load_model_config(target, prefix, args.model_version)
if model_cfg is None:
print("Unable to find corresponding model config!")
sys.exit()
args.model_cfg = model_cfg
dataset_cfg = load_dataset_stats(args.dataset, args.dataset_version)
if dataset_cfg is None:
print("Unable to find corresponding dataset config!")
sys.exit()
args.dataset_cfg = dataset_cfg
args = create_io_config(args, args.dataset, args.dataset_version, pretrain_model=args.model_file, target=target)
return args
def handle_argv_simple():
parser = argparse.ArgumentParser(description='PyTorch LIMU-BERT Model')
parser.add_argument('model_file', type=str, default=None, help='Pretrain model file')
parser.add_argument('dataset', type=str, help='Dataset name', choices=['hhar', 'motion', 'uci', 'shoaib','merge'])
parser.add_argument('dataset_version', type=str, help='Dataset version', choices=['10_100', '20_120'])
args = parser.parse_args()
dataset_cfg = load_dataset_stats(args.dataset, args.dataset_version)
if dataset_cfg is None:
print("Unable to find corresponding dataset config!")
sys.exit()
args.dataset_cfg = dataset_cfg
return args
def load_raw_data(args):
data = np.load(args.data_path).astype(np.float32)
labels = np.load(args.label_path).astype(np.float32)
return data, labels
def load_pretrain_data_config(args):
model_cfg = args.model_cfg
train_cfg = TrainConfig.from_json(args.train_cfg)
mask_cfg = MaskConfig.from_json(args.mask_cfg)
dataset_cfg = args.dataset_cfg
if model_cfg.feature_num > dataset_cfg.dimension:
print("Bad Crossnum in model cfg")
sys.exit()
set_seeds(train_cfg.seed)
data = np.load(args.data_path).astype(np.float32)
labels = np.load(args.label_path).astype(np.float32)
return data, labels, train_cfg, model_cfg, mask_cfg, dataset_cfg
def load_classifier_data_config(args):
model_cfg = args.model_cfg
train_cfg = TrainConfig.from_json(args.train_cfg)
dataset_cfg = args.dataset_cfg
set_seeds(train_cfg.seed)
data = np.load(args.data_path).astype(np.float32)
labels = np.load(args.label_path).astype(np.float32)
return data, labels, train_cfg, model_cfg, dataset_cfg
def load_classifier_config(args):
model_cfg = args.model_cfg
train_cfg = TrainConfig.from_json(args.train_cfg)
dataset_cfg = args.dataset_cfg
set_seeds(train_cfg.seed)
return train_cfg, model_cfg, dataset_cfg
def load_bert_classifier_data_config(args):
model_bert_cfg, model_classifier_cfg = args.model_cfg
train_cfg = TrainConfig.from_json(args.train_cfg)
dataset_cfg = args.dataset_cfg
if model_bert_cfg.feature_num > dataset_cfg.dimension:
print("Bad feature_num in model cfg")
sys.exit()
set_seeds(train_cfg.seed)
data = np.load(args.data_path).astype(np.float32)
labels = np.load(args.label_path).astype(np.float32)
return data, labels, train_cfg, model_bert_cfg, model_classifier_cfg, dataset_cfg
def count_model_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)