Skip to content

Files

This branch is 1335 commits ahead of, 1117 commits behind lightningnetwork/lnd:master.

lntest

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 4, 2021
Oct 25, 2023
Oct 21, 2024
Oct 11, 2024
Oct 11, 2024
Mar 18, 2024
Oct 11, 2024
Oct 16, 2024
Jun 13, 2024
Jul 23, 2024
Oct 16, 2024
Oct 16, 2024
Oct 16, 2024
Oct 16, 2024
Jul 23, 2024
Dec 15, 2017
Jul 24, 2024
Oct 21, 2024
Oct 21, 2024
Oct 21, 2024
Jul 23, 2024
Jul 23, 2024
Feb 23, 2023
Jul 23, 2024

lntest

lntest is a package which holds the components used for the lnd’s integration tests. It is responsible for managing lnd nodes, chain backends and miners, advancing nodes’ states and providing assertions.

Quick Start

A simple example to run the integration test.

func TestFoo(t *testing.T) {
	// Get the binary path and setup the harness test.
	//
	// TODO: define the binary path to lnd and the name of the database
	// backend.
	harnessTest := lntemp.SetupHarness(t, binary, *dbBackendFlag)
	defer harnessTest.Stop()

	// Setup standby nodes, Alice and Bob, which will be alive and shared
	// among all the test cases.
	harnessTest.SetupStandbyNodes()

	// Run the subset of the test cases selected in this tranche.
	//
	// TODO: define your own testCases.
	for _, tc := range testCases {
		tc := tc

		t.Run(tc.Name, func(st *testing.T) {
			// Create a separate harness test for the testcase to
			// avoid overwriting the external harness test that is
			// tied to the parent test.
			ht := harnessTest.Subtest(st)

			// Run the test cases.
			ht.RunTestCase(tc)
		})
	}
}

Package Structure

This package has four major components, HarnessTest, HarnessMiner, node.HarnessNode and rpc.HarnessRPC, with the following architecture,

+----------------------------------------------------------+
|                                                          |
|                        HarnessTest                       |
|                                                          |
| +----------------+  +----------------+  +--------------+ |
| |   HarnessNode  |  |   HarnessNode  |  | HarnessMiner | |
| |                |  |                |  +--------------+ |
| | +------------+ |  | +------------+ |                   |
| | | HarnessRPC | |  | | HarnessRPC | |  +--------------+ |
| | +------------+ |  | +------------+ |  | HarnessMiner | |
| +----------------+  +----------------+  +--------------+ |
+----------------------------------------------------------+
  • HarnessRPC holds all the RPC clients and adds a layer over all the RPC methods to assert no error happened at the RPC level.

  • HarnessNode builds on top of the HarnessRPC. It is responsible for managing the lnd node, including start and stop pf the lnd process, authentication of the gRPC connection, topology subscription(NodeWatcher) and maintains an internal state(NodeState).

  • HarnessMiner builds on top of btcd’s rcptest.Harness and is responsible for managing blocks and the mempool.

  • HarnessTest builds on top of testing.T and can be viewed as the assertion machine. It provides multiple ways to initialize a node, such as with/without seed, backups, etc. It also handles interactions between nodes like connecting nodes and opening/closing channels so it’s easier to acquire or validate a desired test states such as node’s balance, mempool condition, etc.

Standby Nodes

Standby nodes are HarnessNodes created when initializing the integration test and stay alive across all the test cases. Creating a new node is not without a cost. With block height increasing, it takes significantly longer to initialize a new node and wait for it to be synced. Standby nodes, however, don’t have this problem as they are digesting blocks all the time. Thus, it’s encouraged to use standby nodes wherever possible.

Currently, there are two standby nodes, Alice and Bob. Their internal states are recorded and taken into account when HarnessTest makes assertions. When making a new test case using Subtest, there’s a cleanup function which further validates the current test case has no dangling uncleaned states, such as transactions left in mempool, open channels, etc.

Different Code Used in lntest

Since the miner in lntest uses regtest, it has a very fast block production rate, which is the greatest difference between the conditions it simulates and the real-world has. Aside from that, lnd has several places that use different code, which is triggered by the build flag integration, to speed up the tests. They are summarized as followings,

  1. funding.checkPeerChannelReadyInterval, which is used when we wait for the peer to send us ChannelReady. This value is 1 second in lnd, and 10 milliseconds in lntest.
  2. lncfg.ProtocolOptions, which is used to specify protocol flags. In lnd, anchor and script enforced lease are enabled by default, while in lntest, they are disabled by default.
  3. Reduced scrypt parameters are used in lntest. In lnd, the parameters N, R, and P are imported from snacl, while in lntest they are replaced with waddrmgr.FastScryptOptions. Both macaroon and aezeed are affected.
  4. The method, nextRevocationProducer, defined in LightningWallet is slightly different. For lnwallet, it will check a special pre-defined channel ID to test restoring channel backups created with the old revocation root derivation method.