forked from openfheorg/openfhe-logreg-training-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr_nag.cpp
523 lines (460 loc) · 20 KB
/
lr_nag.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2023, Duality Technologies Inc.
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
//#define PROFILE
/* Please comment/uncomment these as you see fit:
* ENABLE_INFO will display informational output during the run
* ENABLE_DEBUG will display debug info, like actual matrix values
*/
//#define ENABLE_DEBUG
#include "openfhe.h"
#include <iostream>
#include "data_io.h"
#include "lr_train_funcs.h"
#include "lr_types.h"
#include "utils.h"
#include "parameters.h"
/////////////////////////////////////////////////////////
// Global Values
/////////////////////////////////////////////////////////
usint NUM_ITERS_DEF(200);
usint WRITE_EVERY(10);
bool WITH_BT_DEF(true);
int ROWS_TO_READ_DEF(-1); //Note this is to verify zero padding
std::string TRAIN_X_FILE_DEF = "train_data/X_norm_1024.csv";
std::string TRAIN_Y_FILE_DEF = "train_data/y_1024.csv";
std::string TEST_X_FILE_DEF = "train_data/X_norm.csv";
std::string TEST_Y_FILE_DEF = "train_data/y.csv";
uint32_t RING_DIM_DEF(1 << 17);
float LR_GAMMA(0.1); // Learning Rate
float LR_ETA(0.1); // Learning Rate
// Note: the ranges were chosen based on empirical observations.
// Depending on your application, the estimation ranges may change.
// and the estimation degree should change accordingly. Refer to the
// following: to understand what degree might be necessary and how the
// multipication depth requirements will change
// https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/FUNCTION_EVALUATION.md#how-to-choose-multiplicative-depth
int CHEBYSHEV_RANGE_ESTIMATION_START = -16;
int CHEBYSHEV_RANGE_ESTIMATION_END = 16;
int CHEBYSHEV_ESTIMATION_DEGREE = 59;
bool DEBUG = true;
int DEBUG_PLAINTEXT_LENGTH = 32;
// If we are in the 64-bit case, we may want to run bootstrapping twice
// As this will increase our precision, which will make our results
// more in-line with the 128-bit version.
// Note: we default this to 0. If, at call-time, the precision is 0
// we run single-bootstrapping.
int BOOTSTRAP_PRECISION_DEF(0);
void debugWeights(
CC cc, KeyPair keys, const CT& ctWeights,
const PT& ptExtractThetaMask,
const PT& ptExtractPhiMask,
int signedRowSize,
int slotsBoot
) {
std::cout << "\tIn DebugWeights function - Separating Theta and Phi" << std::endl;
CT _ctTheta_DBG = cc->EvalMult(ctWeights, ptExtractThetaMask);
CT ctTheta_DBG = cc->EvalAdd(
cc->EvalRotate(_ctTheta_DBG, signedRowSize),
_ctTheta_DBG
);
CT _ctPhi_DBG = cc->EvalMult(ctWeights, ptExtractPhiMask);
CT ctPhi_DBG = cc->EvalAdd(
cc->EvalRotate(_ctPhi_DBG, -signedRowSize),
_ctPhi_DBG
);
PT ptTheta;
PT ptPhi;
cc->Decrypt(keys.secretKey, ctTheta_DBG, &ptTheta);
cc->Decrypt(keys.secretKey, ctPhi_DBG, &ptPhi);
ptTheta->SetLength(slotsBoot);
ptPhi->SetLength(slotsBoot);
std::cout << "\t\tTHETA: " << ptTheta << std::endl;
std::cout << "\t\tPHI: " << ptPhi << std::endl;
std::cout << "\tExiting DebugWeights function" << std::endl;
}
int main(int argc, char *argv[]) {
OPENFHE_DEBUG_FLAG(false);
// Parse arguments
OPENFHE_DEBUG(5);
/////////////////////////////////////////////////////////
// Setting the default values for everything
/////////////////////////////////////////////////////////
Parameters params{};
params.populateParams(argc, argv, NUM_ITERS_DEF, WITH_BT_DEF, ROWS_TO_READ_DEF,
TRAIN_X_FILE_DEF, TRAIN_Y_FILE_DEF, TEST_X_FILE_DEF, TEST_Y_FILE_DEF,
RING_DIM_DEF, WRITE_EVERY, BOOTSTRAP_PRECISION_DEF, false
);
/////////////////////////////////////////////////////////
// Handle IO for writing
/////////////////////////////////////////////////////////
std::ofstream ofsloss;
ofsloss.precision(params.outputPrecision);
ofsloss.open(params.lossOutFile);
if (!ofsloss.is_open()) {
std::cerr << "Could not open file to write train loss to " << params.lossOutFile << std::endl;
exit(EXIT_FAILURE);
}
ofsloss << "Time Taken(s), " << "Train Losses" << std::endl;
std::ofstream weightOFS;
weightOFS.precision(params.outputPrecision);
weightOFS.open(params.weightsOutFile, std::ofstream::out | std::ofstream::trunc);
if (!weightOFS.is_open()) {
std::cerr << "Couldn't open file to write weights to";
exit(EXIT_FAILURE);
}
weightOFS << "Weights" << std::endl;
std::ofstream testOFS;
testOFS.precision(params.outputPrecision);
testOFS.open(params.testLossOutFile, std::ofstream::out | std::ofstream::trunc);
if (!testOFS.is_open()) {
std::cerr << "Couldn't open file to write test loss to";
exit(EXIT_FAILURE);
}
testOFS << "Test Losses" << std::endl;
/////////////////////////////////////////////////////////
// Crypto CryptoParams
/////////////////////////////////////////////////////////
lbcrypto::SecurityLevel securityLevel = lbcrypto::HEStd_128_classic;
// lbcrypto::SecurityLevel securityLevel = lbcrypto::HEStd_NotSet;
uint32_t numLargeDigits = 0;
uint32_t maxRelinSkDeg = 1;
#if NATIVEINT == 128
std::cout << "Running in 128-bit mode" << std::endl;
uint32_t firstModSize = 89;
uint32_t dcrtBits = 78;
#else
std::cout << "Running in 64-bit mode" << std::endl;
uint32_t firstModSize = 60;
uint32_t dcrtBits = 59;
#endif
uint32_t batchSize = params.ringDimension / 2;
lbcrypto::ScalingTechnique rsTech = lbcrypto::FIXEDAUTO;
lbcrypto::KeySwitchTechnique ksTech = lbcrypto::HYBRID;
CryptoParams parameters;
std::vector<uint32_t> levelBudget;
std::vector<uint32_t> bsgsDim = {0, 0};
uint32_t multDepth;
if (params.withBT) {
std::cout << "Using Bootstrapping" << std::endl;
// Params here set based on discussion in
// https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/advanced-ckks-bootstrapping.cpp
lbcrypto::SecretKeyDist skDist = lbcrypto::UNIFORM_TERNARY;
// linear transform using 1 level is good for CKKS bootstrapping as the number of features is small (10)
levelBudget = {2, 2};
uint32_t levelsBeforeBootstrap = 14;
uint32_t approxBootstrapDepth = 8;
#if NATIVEINT == 64
// Add an extra level based on empirical run results. We've encountered an error of
//"DCRTPolyImpl's towers are not initialized" and this addition solves that.
levelsBeforeBootstrap++;
#endif
multDepth = levelsBeforeBootstrap + lbcrypto::FHECKKSRNS::GetBootstrapDepth(
approxBootstrapDepth, levelBudget, skDist
);
std::cout << "*********************************************" << std::endl;
std::cout << "Bootstrapping Crypto Params" << std::endl;
std::cout << "\tDiscrete key used: " << skDist << std::endl;
std::cout << "\tApprox Bootstrap depth: " << approxBootstrapDepth << std::endl;
std::cout << "\tLevels before bootstrap: " << levelsBeforeBootstrap << std::endl;
std::cout << "\tFinal Bootstrap Depth: " << multDepth << std::endl;
parameters.SetSecretKeyDist(skDist);
} else {
std::cout << "Using Interactive Methods" << std::endl;
// Unpacking the two ciphertexts
// EncLogRegCalculateGradient consumes 12 levels:
// MatrixVectorProductRow takes 2 levels,
// EvalLogistic for deg = 128 takes 9 levels
// and then MatrixVectorProductCol takes 1 level
// then 2 more levels are used after logreg iteration
// Used to be 12 based on above, but in the case where we pack the
// weights nto a single ciphertext we need to do extra mults
// NOTE: Recreating the theta and phi from the single ciphertext
// + 1 multiplication and 1 rotation
// NOTE: Joining theta and phi into a single ciphertext
// + 1 multiplication and 1 addition
multDepth = 13;
}
/////////////////////////////////////////////////////////
// Set crypto params and create context
/////////////////////////////////////////////////////////
parameters.SetMultiplicativeDepth(multDepth);
parameters.SetScalingModSize(dcrtBits);
parameters.SetBatchSize(batchSize);
parameters.SetSecurityLevel(securityLevel);
parameters.SetRingDim(params.ringDimension);
parameters.SetScalingTechnique(rsTech);
parameters.SetKeySwitchTechnique(ksTech);
parameters.SetNumLargeDigits(numLargeDigits);
parameters.SetFirstModSize(firstModSize);
parameters.SetMaxRelinSkDeg(maxRelinSkDeg);
CC cc;
cc = GenCryptoContext(parameters);
// Enable the features that you wish to use.
cc->Enable(lbcrypto::PKE);
cc->Enable(lbcrypto::LEVELEDSHE);
cc->Enable(lbcrypto::ADVANCEDSHE);
if (!cc) {
std::cout << "Error generating CKKS context... " << std::endl;
exit(EXIT_FAILURE);
}
std::cout << "Generating keys" << std::endl;
KeyPair keys = cc->KeyGen();
std::cout << "\tMult keys" << std::endl;
cc->EvalMultKeyGen(keys.secretKey);
std::cout << "\tEvalSum keys" << std::endl;
cc->EvalSumKeyGen(keys.secretKey);
usint numSlots = cc->GetEncodingParams()->GetBatchSize();
/////////////////////////////////////////////////////////////////
//Load Plaintext Data
/////////////////////////////////////////////////////////////////
Mat NegXt;
Mat beta;
Mat X;
Mat y;
Mat testX;
Mat testY;
PT ptExtractThetaMask;
PT ptExtractPhiMask;
populateData(params, cc, keys, NegXt,
beta, X, y, testX, testY,
ptExtractThetaMask, ptExtractPhiMask, LR_GAMMA
);
usint originalNumSamp = X.size(); //n_samp
usint originalNumFeat = X[0].size(); //n_feat (including the intecept column
auto dims = ComputePaddedDimensions(originalNumSamp, originalNumFeat, numSlots);
usint rowSize = dims.second;
int signedRowSize = (int) rowSize;
MatKeys evalSumRowKeys = cc->EvalSumRowsKeyGen(keys.secretKey, nullptr, rowSize);
MatKeys evalSumColKeys = cc->EvalSumColsKeyGen(keys.secretKey);
/////////////////////////////////////////////////////////////////
//Encrypt Data
/////////////////////////////////////////////////////////////////
CT ctWeights = collateOneDMats2CtVRC(cc, beta, beta, rowSize, numSlots, keys);
// returns negative X' matrix n_samp x n_features and initializes beta
auto ctNegXt = Mat2CtMRM(cc, NegXt, rowSize, numSlots, keys);
///note these functions WILL zero pad out the matricies
auto ctX = Mat2CtMRM(cc, X, rowSize, numSlots, keys); //verified ok
// using mcm because NegXt is -X being transposed by packing.
CT ctyVCC = OneDMat2CtVCC(cc, y, rowSize, numSlots, keys);
/////////////////////////////////////////////////////////////////
//Tracking and debugging
/////////////////////////////////////////////////////////////////
PT ptTheta; //plaintext for the resulting beta output
CT ctGradient;
double totalTime = 0;
Vec final_b_vec;
Mat final_b;
TimeVar t;
/////////////////////////////////////////////////////////////////
// Optimization: set the number of slots for sparse bootstrap
/////////////////////////////////////////////////////////////////
auto numFeaturesEnc = NextPow2(originalNumFeat);
auto numSlotsBoot = numFeaturesEnc * 8;
if (params.withBT) {
cc->Enable(lbcrypto::FHE);
cc->EvalBootstrapSetup(levelBudget, bsgsDim, numSlotsBoot);
cc->EvalBootstrapKeyGen(keys.secretKey, numSlotsBoot);
}
/////////////////////////////////////////////////////////////////
// Logistic regression training loop on encrypted data
auto mode = (params.withBT) ? "Bootstrap " : "Interactive ";
std::cout << std::endl;
for (usint epochI = 0; epochI < params.numIters; epochI++) {
TIC(t);
std::cout << mode << "Iteration: " << epochI
<< " ******************************************************************"
<< std::endl;
auto epochInferenceStart = std::chrono::high_resolution_clock::now();
if ((params.withBT) && epochI > 0) {
ctWeights->SetSlots(numSlotsBoot);
#if NATIVEINT == 128
ctWeights = cc->EvalBootstrap(ctWeights);
#else
// If we are in the 64-bit case, we may want to run bootstrapping twice
// As this will increase our precision, which will make our results
// more in-line with the 128-bit version
if (params.btPrecision > 0){
std::cout << "Running double-bootstrapping at: " << params.btPrecision << " precision" << std::endl;
ctWeights = cc->EvalBootstrap(ctWeights, 2, params.btPrecision);
} else {
ctWeights = cc->EvalBootstrap(ctWeights);
}
#endif
OPENFHE_DEBUGEXP(ctWeights->GetLevel());
} else {
OPENFHE_DEBUGEXP(ReturnDepth(ctWeights));
ReEncrypt(cc, ctWeights, keys);
OPENFHE_DEBUGEXP(ReturnDepth(ctWeights));
}
/////////////////////////////////////////////////////////////////
// Extract the weights
// 1) mask out the phi to get just Theta
// 2) mask
/////////////////////////////////////////////////////////////////
CT _ctTheta = cc->EvalMult(ctWeights, ptExtractThetaMask);
// _ctTheta
// - numFeaturesEnc of 0s, numFeaturesEnc of thetas repeating to fill in the entire CT
// | 0, 0, ..., 0, theta_0, theta_1, ..., theta_15, 0,| (repeated)
CT ctTheta = cc->EvalAdd(
cc->EvalRotate(_ctTheta, signedRowSize), // | 0, theta, 0, theta ...|
_ctTheta);
// ctTheta
// | theta_0, theta_1, ..., theta_15, theta_0, theta_1, ..., theta_15|
OPENFHE_DEBUGEXP(ctTheta);
CT _ctPhi = cc->EvalMult(ctWeights, ptExtractPhiMask); // | 0, phi, 0, phi, ...|
// _ctPhi
// - numFeaturesEnc of phis, numFeaturesEnc of 0s repeating to fill in the entire CT
// | phi_0, phi_1, ..., phi_15, 0, 0, ..., 0|
CT ctPhi = cc->EvalAdd(
cc->EvalRotate(_ctPhi, -signedRowSize),
_ctPhi
);
// ctPhi
// | phi_0, phi_1, ..., phi_15, phi_0, phi_1, ..., phi_15|
#ifdef ENABLE_DEBUG
OPENFHE_DEBUG("Decrypting the ciphertexts to inspect the values");
PT ptThetaDBG;
cc->Decrypt(ctTheta, keys.secretKey, &ptThetaDBG);
ptTheta->SetLength(signedRowSize * 4);
OPENFHE_DEBUG(ptThetaDBG);
for (auto &v : ptThetaDBG->GetCKKSPackedValue()) {
std::cout << v << ", " << std::endl;
}
PT ptPhiDBG;
cc->Decrypt(ctTheta, keys.secretKey, &ptPhiDBG);
ptPhiDBG->SetLength(signedRowSize * 4);
OPENFHE_DEBUG(ptPhiDBG);
for (auto &v : ptPhiDBG->GetCKKSPackedValue()) {
std::cout << v << ", " << std::endl;
}
#endif
/////////////////////////////////////////////////////////////////
//Note: Formulation based on:
// https://eprint.iacr.org/2018/462.pdf, Algorithm 1
// and https://jlmelville.github.io/mize/nesterov.html
/////////////////////////////////////////////////////////////////
EncLogRegCalculateGradient(cc, ctX, ctNegXt, ctyVCC, ctTheta, ctGradient,
rowSize, evalSumRowKeys, evalSumColKeys, keys,
false,
CHEBYSHEV_RANGE_ESTIMATION_START,
CHEBYSHEV_RANGE_ESTIMATION_END,
CHEBYSHEV_ESTIMATION_DEGREE,
DEBUG_PLAINTEXT_LENGTH
);
#ifdef ENABLE_DEBUG
PT ptGrad;
cc->Decrypt(keys.secretKey, ctGradient, &ptGrad);
std::cout << "\tGradient: " << ptGrad << std::endl;
#endif
OPENFHE_DEBUG("Applying gradient");
/////////////////////////////////////////////////////////////////
//Note: Formulation of NAG update based on
// and https://jlmelville.github.io/mize/nesterov.html
/////////////////////////////////////////////////////////////////
auto ctPhiPrime = cc->EvalSub(
ctTheta,
ctGradient
);
if (epochI == 0) {
ctTheta = ctPhiPrime;
} else {
ctTheta = cc->EvalAdd(
ctPhiPrime,
cc->EvalMult(
LR_ETA,
cc->EvalSub(ctPhiPrime, ctPhi)
)
);
}
// Step 11
ctPhi = ctPhiPrime;
if (DEBUG) {
cc->Decrypt(keys.secretKey, ctTheta, &ptTheta);
final_b_vec = ptTheta->GetRealPackedValue();
final_b_vec.resize(originalNumFeat);
final_b = Mat(originalNumFeat, Vec(1, 0.0));
//copy values into final_b matrix
std::cout << "\tNew weights: ";
for (auto copyI = 0U; copyI < originalNumFeat; copyI++) {
std::cout << final_b_vec[copyI] << ",";
final_b[copyI][0] = final_b_vec[copyI];
}
std::cout << std::endl;
auto loss = ComputeLoss(final_b, X, y);
/////////////////////////////////////////////////////////////////
//Saving and logging information
/////////////////////////////////////////////////////////////////
auto epochTime = TOC(t);
totalTime += epochTime;
std::cout << "\tLoss: " << loss << "\t took: "
<< epochTime / 1000.0 << " s" << std::endl;
OPENFHE_DEBUG(loss);
ofsloss << epochTime << ", " << loss << std::endl;
if (epochI % WRITE_EVERY == 0 && epochI > 0) {
std::cout << "\t Writing weights and test loss to files: " << "(" <<
params.weightsOutFile << ", " << params.testLossOutFile << ")" << std::endl;
/////////////////////////////////////////////////////////////////
// Writing the weights
/////////////////////////////////////////////////////////////////
weightOFS << epochI << ",";
OPENFHE_DEBUG("Writing weights to: " + params.weightsOutFile);
for (auto &singletonWeight : final_b) {
weightOFS << singletonWeight[0] << ",";
}
weightOFS << std::endl;
/////////////////////////////////////////////////////////////////
// Writing the Test Loss
/////////////////////////////////////////////////////////////////
OPENFHE_DEBUG("Writing test loss to: " + params.testLossOutFile);
auto testLoss = ComputeLoss(final_b, testX, testY);
std::cout << "\tTest Loss: " << testLoss << std::endl;
testOFS << epochI << ", " << testLoss << std::endl;
}
}
/////////////////////////////////////////////////////////////////
// Packing the two ciphertexts back
/////////////////////////////////////////////////////////////////
OPENFHE_DEBUG("Repacking the ciphertexts");
ctTheta = cc->EvalMult(ctTheta, ptExtractThetaMask); // | theta, 0, theta, 0|
ctPhi = cc->EvalMult(ctPhi, ptExtractPhiMask); //| 0, phi, 0, phi|
ctWeights = cc->EvalAdd(ctTheta, ctPhi);
auto epochInferenceEnd = std::chrono::high_resolution_clock::now();
auto inferenceDuration = std::chrono::duration_cast<std::chrono::milliseconds>(
epochInferenceEnd - epochInferenceStart
);
std::cout << "\t***Iteration: " << epochI << "\tInference time: " << inferenceDuration.count() << " seconds" << std::endl;
}
ofsloss.close();
weightOFS.close();
testOFS.close();
std::cout << "Total Time for training " << params.numIters << " epochs was " << totalTime / 1000.0 << " s"
<< std::endl;
}