-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodefile.Rmd
328 lines (224 loc) · 10.6 KB
/
codefile.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
---
title: "Bone Marrow"
author: "Snehadrita Das"
date: "2023-05-14"
output: pdf_document
---
## Data Loading, Preprocessing and Splitting
```{r,warning=FALSE}
bm=read.csv("C:/Users/hp/Desktop/data proj/BoneMarrow.csv")
head(bm,3)
```
## Library Dependency
```{r}
library("survival")
library("penalized")
library("survminer")
library("randomForestSRC")
library("corrplot")
library("ggplot2")
```
## Exploratory Data Analysis
A separate dataset Catdata containing all the predictor variables has been created for the ease of EDA while suspecting Multicollinearity.
### Converting into Factors for catdata
```{r}
predictors <- read.csv("C:/Users/hp/Desktop/predictors.csv")
catdata<- predictors[,1:21]
catdata$Recipientgender=as.factor(catdata$Recipientgender)
catdata$Stemcellsource=as.factor(catdata$Stemcellsource)
## like this for the rest of the variables
```
### Checking Difference of Deviances
* Checking the difference of null and residual deviance as a metric for how much the variability is being explained and too small value of such difference is problematic as well as too large value since the bigger difference indicated less than p-variables are explaining the variability or none of them are significant in explaining the variability.
* The difference less than 0.1 and equal to or greater than 0.3 has been considered problematic
```{r}
catfit1<- glm(Recipientgender~.,data=catdata,family = "binomial")
catfit2<- glm(Stemcellsource~.,data=catdata,family = "binomial")
## lie this for the rest of the variables
```
### Converting into Factors for the main dataset
```{r}
bm$Recipientgender=as.factor(bm$Recipientgender)
bm$Stemcellsource=as.factor(bm$Stemcellsource)
## lie this for the rest of the variables
str(bm)
```
### Splitting into Train and Test data for ML works
```{r}
set.seed(11)
train<- sample(1:177,142,replace = FALSE)
bmtrain=bm[train,]
bmtest=bm[-train,]
```
## Exploratory Data Analysis for the continuous variables
```{r}
## Matrix Correlation Plot
cornum <- bm[,c(3,21,25:31)]
corrplot(cor(cornum),method="square",type="lower",tl.col = 1,tl.srt=45,bg="gray",tl.cex=0.6,number.cex=0.8,number.font = 3)
```
## Fitting CoxPH model
```{r}
## Model excluding multicollinear variables
coxfit1<-coxph(Surv(survival_time,survival_status)~Recipientgender+
Stemcellsource+Donorage + DonorABO +RecipientABO+Donorage35+
RecipientRh + ABOmatch + Disease +Diseasegroup +DonorCMV+
Recipientage +Recipientage10 + Relapse+ CD34kgx10d6 +
CD3dCD34+CD3dkgx10d8+Rbodymass+ANCrecovery+PLTrecovery+
time_to_aGvHD_III_IV,data=bmtrain)
## !!!! Warning: Ran out of iterations and did not converge !!!!
```
## Diagnostic of CoxPH
### Reasons for CoxPH model to run out of iterations and do not converge
1. Separation: When there are one or more predictor variables that perfectly predict the outcome variable, also known as complete separation, the maximum likelihood estimation may not exist, and the optimization algorithm may fail to converge.
2. Small sample size. 3. Highly correlated variables. 4. Non-proportional hazards.
* (1).Survival curves for different strata must have hazard functions that are proportional over the time t
* (2).The relationship between the log hazard and each covariate is linear, which can be verified with residual plots.
#### Checking the proportional hazard assumption
```{r}
## checking the proportional hazard assumption
schoenfeld.res = residuals(coxfit1,type="schoenfeld")
head(schoenfeld.res)
plot(schoenfeld.res[,16]~survival_time[which(survival_status==1)],data=bmtrain,
xlab="Time",ylab="Res CD34kgx10d6",main="schoenfeld residual for CD34kgx10d6") ; abline(h=0,col="red")
plot(schoenfeld.res[,17]~survival_time[which(survival_status==1)],data=bmtrain,
xlab="Time",ylab="Res CD3dCD34",main="schoenfeld residual for CD3dCD34") ; abline(h=0,col="red")
## lie this for the rest of the variables
```
## Fitting CoxPH model again, fixing the time dependency
```{r}
## Model while dealing with the Non-proportionality of hazards
coxfit2<-coxph(Surv(survival_time,survival_status)~Recipientgender+
Stemcellsource + tt(Donorage) + DonorABO + RecipientABO+Donorage35+
RecipientRh + ABOmatch + Disease + Diseasegroup + DonorCMV+
tt(Recipientage) + Recipientage10 + Relapse+ tt(CD34kgx10d6) +
tt(CD3dCD34)+tt(CD3dkgx10d8)+tt(Rbodymass)+tt(ANCrecovery)+
tt(PLTrecovery)+tt(time_to_aGvHD_III_IV),data=bmtrain)
## Model with the interaction term and excluding one of the correlated variables
coxfit4<-coxph(Surv(survival_time,survival_status)~Recipientgender+
Stemcellsource+tt(Donorage) + DonorABO + RecipientABO+
RecipientRh + ABOmatch + Disease +DonorCMV+Donorage35+
Diseasegroup +Recipientage10 +Relapse+ tt(CD34kgx10d6) +
tt(CD3dCD34)+tt(CD3dkgx10d8)+tt(Rbodymass)+tt(ANCrecovery)+
tt(PLTrecovery)+tt(time_to_aGvHD_III_IV)+
tt(Recipientage):tt(Rbodymass) ,data=bmtrain)
## Model with no interaction term and one of the variables excluded
coxfit5<-coxph(Surv(survival_time,survival_status)~Recipientgender+
Stemcellsource+tt(Donorage) + DonorABO + RecipientABO+
RecipientRh + ABOmatch + Disease +DonorCMV+Donorage35+
Diseasegroup +Recipientage10 +Relapse+ tt(CD34kgx10d6) +
tt(CD3dCD34)+tt(CD3dkgx10d8)+tt(Rbodymass)+tt(ANCrecovery)+
tt(PLTrecovery)+tt(time_to_aGvHD_III_IV) ,data=bmtrain)
summary(coxfit1) ; AIC(coxfit1)
summary(coxfit2) ; AIC(coxfit2)
summary(coxfit4) ; AIC(coxfit4)
summary(coxfit5) ; AIC(coxfit5)
```
## Variable Selection and Step Regression
```{r}
## After Step Reg
## The Optimised model
stepcox2<-coxph(formula = Surv(survival_time, survival_status) ~ Stemcellsource +
tt(Donorage) + DonorABO + RecipientRh + DonorCMV + Relapse +
tt(CD3dkgx10d8) + tt(ANCrecovery) + tt(PLTrecovery) + tt(time_to_aGvHD_III_IV),
data = bmtrain)
summary(stepcox2) ; AIC(stepcox2)
```
## Residual Plot
```{r}
## Full model
pfit1<- coxph(Surv(survival_time,survival_status)~Recipientgender+
Stemcellsource+ Donorage + Donorage35 + IIIV +
Gendermatch + DonorABO + RecipientABO+RecipientRh +
ABOmatch + DonorCMV + Disease + Riskgroup + Txpostrelapse +
Diseasegroup + HLAmatch+ HLAmismatch + Antigen + Alel + HLAgrI +
Recipientage +Recipientage10 + Relapse+ aGvHDIIIIV+
CD34kgx10d6 + CD3dCD34 + CD3dkgx10d8 + Rbodymass +
ANCrecovery + PLTrecovery + time_to_aGvHD_III_IV,data=bmtrain)
## The Optimised model
pfit5<-coxph(Surv(survival_time,survival_status)~Stemcellsource+
Donorage +RecipientRh +Disease + Relapse+ANCrecovery+
PLTrecovery+time_to_aGvHD_III_IV,data=bmtrain)
res1 <- residuals(pfit1,type="martingale") ; plot(res1)
res5 <- residuals(pfit5,type="martingale") ; plot(res5)
```
* ***Also the points on the plots show patterns.***
## The Penalisation
```{r}
penfit3 <- penalized(Surv(survival_time,survival_status)~.,data=bmtrain,lambda1 = 3)
coefficients(penfit3) ## pentalty = 5.883067
```
## Visualisation of Shrinkage of coefficients
```{r}
bmpen2=penalized(Surv(survival_time,survival_status)~., standardize = TRUE, steps="Park",data=bmtrain,lambda1=5)
plotpath(bmpen2,labelsize =0.8,lwd=2,cex=2)
```
## Recreating some of the graphs
```{r}
#### Schoenfeld Residuals
ggdata <- data.frame(index = 1:142,
Residuals = pen.martingale)
g.pen <- ggplot(data=ggdata,aes(x=index,y=Residuals))+
geom_point()+geom_hline(yintercept = 0) +
ggtitle("Martingale Residual For Cox-Lasso Model") +
xlab("Index")+ylab("Martingale Residual")+
theme(aspect.ratio=0.8) ; g.pen
### Martingale residual plot
ggcoxdiagnostics(pfit5,type = "martingale",linear.predictions=F,
ggtheme = ggplot2::theme_gray(),title = "Diagnostic Plot")
### Plots related Penalization
g4 <- ggplot(data=pendata,aes(x=Lambda,y=LogLik))+
geom_point()+geom_line() + ylim(-350,-300) +
ggtitle("Tuning Parameter vs Loss Function") +
xlab("Value of Tuning Parameter Lambda")+ylab("Value of the Loss function")+
theme(aspect.ratio=0.8) ; g4
g5 <- ggplot(data=pendata,aes(x=NonZeroVar,y=LogLik))+
geom_point()+geom_line() + ylim(-350,-300) +
ggtitle("Non Zero Var vs Loss Function") +
xlab("Number of Non Zero Variables")+ylab("Value of the Loss function")+
theme(aspect.ratio=0.8) ; g5
grid.arrange(g4,g5, ncol=2, nrow =1)
```
## Random Survival Forest
### Model 1 : Passing all the variables
```{r,message=FALSE,warning=FALSE}
## Tuning the nodesize
set.seed(132)
tune.nodesize(Surv(survival_time,survival_status) ~ ., data=bmtrain[,-12])
## Comparing the Splitting rules
set.seed((132))
split1 <- rfsrc(Surv(survival_time,survival_status)~.,
mtry=10,importance = "permute", nodesize = 9 ,
splitrule = "logrankscore",
bootstrap = "by.root",ntree=5000,data=bmtrain[,-12])
set.seed((132))
split2<- rfsrc(Surv(survival_time,survival_status)~.,
mtry=10,importance = "permute", nodesize = 9 ,
splitrule = "logrank",
bootstrap = "by.root",ntree=5000,data=bmtrain[,-12])
set.seed((132))
split3<- rfsrc(Surv(survival_time,survival_status)~.,
mtry=10,importance = "permute", nodesize = 9 ,
splitrule = "bs.gradient",
bootstrap = "by.root",ntree=5000,data=bmtrain[,-12])
## passing only the variables chosen by LASSO
formula <- Surv(survival_time,survival_status)~IIIV + Donorage + DonorABO +
RecipientRh +Diseasegroup + Riskgroup +
Recipientage10 + Relapse+ CD34kgx10d6 +
CD3dCD34+CD3dkgx10d8+Rbodymass+ANCrecovery+PLTrecovery+
time_to_aGvHD_III_IV
set.seed((132))
model.pen <- rfsrc(formula = formula,
mtry=5,importance = "permute", nodesize = 9 ,
splitrule = "logrank",
bootstrap = "by.root",ntree=5000,data=bmtrain)
print(model.pen)
plot(get.tree(model.pen, 3))
plot(model.pen)
```
## Comprehension Table
```{r}
Model = c("logrank Score", "logrank", "bs gradient", "All Var","Var selected by LASSO")
Error.Rate= c(0.4052, 0.3317,0.3325,0.3317, 0.32069)
cm.table <- data.frame(Model,Error.Rate, ntree= rep(5000,5))
cm.table
```