-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpmid_fixer.py
162 lines (145 loc) · 4.97 KB
/
pmid_fixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pubmedpy
import time
import csv
import sys
from paste.deploy import appconfig
from pylons import config
from abstrackr.config.environment import load_environment
from abstrackr.model.meta import Session
import abstrackr.model as model
from sqlalchemy import and_
conf = appconfig('config:development.ini', relative_to='.')
load_environment(conf.global_conf, conf.local_conf)
#### Match abstract title to PMID
FILE_PATH = sys.argv[1]
OUT_PATH = sys.argv[2]
hPmid = 'pmid'
hCitation = 'citation_id'
hTitle = 'title'
hPrediction = 'predicted p of being relevant'
hHard = '\'hard\' screening prediction*'
with open(FILE_PATH, 'rU') as f:
reader = csv.DictReader(f, dialect='excel', delimiter='\t')
with open(OUT_PATH, 'w') as csvfile:
fieldnames = [hPmid, hCitation, hTitle, hPrediction, hHard]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
for row in reader:
output_row = {}
citation_id = row[hCitation]
title = row[hTitle]
predicted = row[hPrediction]
hard = row[hHard]
try:
pmid = pubmedpy.get_pmid_from_title(title)
pmid = int(pmid)
except Exception as e:
pmid = '-- Cannot find --'
output_row = { hPmid: pmid, hCitation: citation_id,
hTitle: title, hPrediction: predicted,
hHard: hard }
writer.writerow(output_row)
###############################################################################################
#### This is fixing Emily's project. The refman ids weren't saved when she imported the project
#PROJECT_ID = 219
#FILE_PATH = './Abstraktr_Update_Lit_Review_11.12.13.txt'
#citations_q = Session.query(model.Citation)
#
#found = 0
#not_found = 0
#
#with open(FILE_PATH, 'r') as f:
# reader = csv.DictReader(f, delimiter='\t')
#
# for row in reader:
# #print(row['id'], row['title'], row['abstract'])
# citation = citations_q.filter_by(title=row['title'], project_id=PROJECT_ID).first()
# if not citation:
# print('could not find title matching with %s' % row['title'])
# not_found += 1
# else:
# found += 1
# citation.refman = row['id']
# Session.add(citation)
# Session.commit()
#
#print("found %s" % found)
#print("not found %s" % not_found)
###############################################################################################
### This was for getting PMID's from the titles
#citations_q = Session.query(model.Citation)
#citations = citations_q.filter(model.Citation.pmid == 0).all()
#
#print(len(citations))
#
#for c in citations:
# id = c.id
# title = c.title
# try:
# pmid = pubmedpy.get_pmid_from_title(title)
# pmid = int(pmid)
# except:
# pmid = None
# finally:
# if pmid==0:
# pmid = None
# c.pmid = pmid
# Session.add(c)
# Session.commit()
#print("done")
####################################################################################
### This is for counting the number of labels for each citation in Issa's project
# d_user_studies_labeled = {'chris': [], 'issa': [], 'galan': [], 'dale': []}
# d_map = {'chris': 6, 'issa': 7, 'galan': 8, 'dale': 9}
# users = ['chris', 'issa', 'galan', 'dale']
# summary = {}
# lof_citation_ids_with_one_label = []
# lof_citation_ids_with_three_labels = []
#
# all_citations_q = Session.query(model.Citation)
# all_citations = all_citations_q.filter_by(project_id=80).all()
# all_citation_ids = [c.id for c in all_citations]
#
# for user in users:
# print("Working on %s" % user)
# #time.sleep(3)
# labels_q = Session.query(model.Label)
# labels = labels_q.filter_by(project_id=80, user_id=d_map[user]).all()
# for label in labels:
# d_user_studies_labeled[user].append(label.study_id)
# print(" %s has labeled %s studies" % (user, len(d_user_studies_labeled[user])))
#
# print("")
# print("*This project has %s citations*" % (len(all_citations)))
#
# for cit_id in all_citation_ids:
# for user in users:
# if cit_id in d_user_studies_labeled[user]:
# try:
# summary[cit_id] += 1
# except KeyError:
# summary[cit_id] = 1
#
# for key, val in summary.items():
# if val==1:
# lof_citation_ids_with_one_label.append(key)
# elif val==3:
# lof_citation_ids_with_three_labels.append(key)
#
# for c_id in lof_citation_ids_with_one_label:
# print str(c_id) + ",",
#
# print ""
# print "Need to label %s more" % len(lof_citation_ids_with_one_label)
# print "%s citations have 3 labels" % len(lof_citation_ids_with_three_labels)
#
# for i in lof_citation_ids_with_one_label:
# p = Session.query(model.Priority).filter_by(project_id=80, citation_id=i).first()
#
# if p is None:
# priority = model.Priority()
# priority.project_id = 80
# priority.citation_id = i
# priority.num_times_labeled = 1
# Session.add(priority)
# Session.commit()
###########################################################################################