-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_prior_training.py
345 lines (307 loc) · 15.6 KB
/
main_prior_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from prior_model import *
from config import configs
from data.load_data import load_training_set
import torch
import argparse
import os
import pickle
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--train_dir', required=True, help='training dir')
parser.add_argument('--train_size', type=int, default=10000000000, help='training size. Default choice is to use all dataset in train_dir. Note, that if patches are used, please specific the patch number here. If the total number specified here is larger than the total available number, all instances will be used.')
parser.add_argument("--dataset", choices=("cifar", "kodak", "video", "audio", "protein"), )
parser.add_argument("--device", default="cuda")
parser.add_argument("--max_bitrate", type=float, required=True, help="maximum bitrate budget (bpp or kbps or bits per residue)")
parser.add_argument("--saving_dir", default="./", help="dir to save prior/linear transform/upsampling net/initializations")
args = parser.parse_args()
return args
def main():
# parse arguments
args = parse_args()
config = configs[args.dataset]
in_dim = config['input_dim']
hidden_dims = config['hidden_dims']
out_dim = config['output_dim']
if config['patch']:
number_of_entire_training_instances = args.train_size // np.prod(config['patch_nums'])
else:
number_of_entire_training_instances = args.train_size
X, Y = load_training_set(args.train_dir,
args.dataset,
args.seed,
number_of_entire_training_instances,
config['fourier_dim'],
config['patch'],
config['pixel_sizes'])
X = X.to(args.device)
Y = Y.to(args.device)
train_size = X.shape[0]
print("Prior is trained on %d patches/images." % train_size, flush=True)
# defined model and mappings
device = args.device
prior_model = PriorBNNmodel(in_dim=in_dim,
hidden_dims=hidden_dims,
out_dim=out_dim,
train_size=train_size,
data_dim=config['data_dim'],
pixel_sizes=config['pixel_sizes'],
upsample_factors=config['upsample_factors'],
latent_dim=config['latent_dim'],
patch=config['patch'],
patch_nums=config['patch_nums'],
hierarchical_patch_nums=config['hierarchical_patch_nums'],
random_seed=args.seed,
device=device,
init_log_scale=-4,
c=6.,
w0=30.
).to(device)
linear_transform = LinearTransform(prior_model.dims).to(device)
upsample_net = Upsample(kernel_dim=config['data_dim'],
paddings=config['paddings'],
layerwise_scale_factors=config['layerwise_scale_factors']).to(device)
kl_beta = 1e-8 # initial beta
if args.dataset != 'audio':
budget_max = args.max_bitrate * np.prod(config['pixel_sizes'])
budget_min = max(config['lowest_bitrate'], (args.max_bitrate - config['bitrate_range'])) * np.prod(config['pixel_sizes'])
else:
# note that the unit of audio is Kpbs. Not bits per xxx
budget_max = args.max_bitrate * np.prod(config['pixel_sizes']) * (3/48000) * 1000 # kbps * pixel per signal * sec per pixel
budget_min = max(config['lowest_bitrate'], (args.max_bitrate - config['bitrate_range'])) * np.prod(config['pixel_sizes']) * (3/48000) * 1000
assert budget_min <= budget_max
# initialize priors
prior_loc = torch.zeros(prior_model.loc.shape[1]).to(device)
prior_scale = torch.ones(prior_model.loc.shape[1]).to(device) * F.softplus(torch.tensor(-2.).to(device), beta=1, threshold=20) / 6
prior_lpe_loc = torch.zeros(prior_model.lpe_loc.shape[1:]).to(device)
prior_lpe_scale = torch.ones(prior_model.lpe_loc.shape[1:]).to(device) * F.softplus(torch.tensor(-2.).to(device), beta=1, threshold=20) / 6
if config['patch']:
prior_h_loc = torch.zeros(prior_model.h_loc.shape[-1]).to(device)
prior_h_scale = torch.ones(prior_model.h_loc.shape[-1]).to(device) * F.softplus(torch.tensor(-2.).to(device), beta=1, threshold=20) / 6
prior_hh_loc = torch.zeros(prior_model.hh_loc.shape[-1]).to(device)
prior_hh_scale = torch.ones(prior_model.hh_loc.shape[-1]).to(device) * F.softplus(torch.tensor(-2.).to(device), beta=1, threshold=20) / 6
else:
prior_h_loc = None
prior_h_scale = None
prior_hh_loc = None
prior_hh_scale = None
# some training initial settings
n_epoch = 200 # the first SGD epoch number
n_em_iter = 550 # the total coordinate ascent iter number
ELBOs = []
# coordinate descent loop
for iter in tqdm(range(n_em_iter)):
# train q and mappings
_, _, _ELBOs = prior_model.train(n_epoch,
2e-4,
X,
Y,
prior_loc,
prior_scale,
prior_lpe_loc,
prior_lpe_scale,
prior_h_loc,
prior_h_scale,
prior_hh_loc,
prior_hh_scale,
linear_transform,
upsample_net,
kl_beta,
training_mappings=True,
verbose=False)
ELBOs = ELBOs + _ELBOs
n_epoch = 100 # after the first iteration, change epoch to 100
# adjust kl beta
with torch.no_grad():
kls = prior_model.calculate_kl(prior_loc,
prior_scale,
prior_lpe_loc,
prior_lpe_scale,
prior_h_loc,
prior_h_scale,
prior_hh_loc,
prior_hh_scale).item()
kls = (kls / np.log(2.)) / X.shape[0] # calculate average KL in bit
# adjust beta according to kl
if kls > budget_max:
kl_beta *= 1.5
if kls < budget_min:
kl_beta /= 1.5
# clamp KL within a reasonable range
if kl_beta > 1:
kl_beta = 1
if kl_beta < 1e-20:
kl_beta = 1e-20
# update prior
prior_loc = prior_model.loc.clone().detach().mean(0)
prior_scale = (prior_model.st(prior_model.log_scale.clone().detach()) ** 2).mean(0) + prior_model.loc.clone().detach().var(0)
prior_scale = prior_scale ** 0.5
prior_lpe_loc = prior_model.lpe_loc.clone().detach().mean([0])
prior_lpe_scale = (prior_model.st(prior_model.lpe_log_scale.clone().detach()) ** 2).mean([0]) + prior_model.lpe_loc.clone().detach().var([0])
prior_lpe_scale = prior_lpe_scale ** 0.5
if config['patch']:
prior_h_loc = prior_model.h_loc.clone().detach().mean([0])
prior_h_scale = (prior_model.st(prior_model.h_log_scale.clone().detach()) ** 2).mean([0]) + prior_model.h_loc.clone().detach().var([0])
prior_h_scale = prior_h_scale ** 0.5
prior_hh_loc = prior_model.hh_loc.clone().detach().mean([0])
prior_hh_scale = (prior_model.st(prior_model.hh_log_scale.clone().detach()) ** 2).mean([0]) + prior_model.hh_loc.clone().detach().var([0])
prior_hh_scale = prior_hh_scale ** 0.5
# every 10 steps: print training psnr/rmsd and save checkpoints
if (iter) % 10 == 0 or iter == n_em_iter - 1:
with torch.no_grad():
y_hat = prior_model.forward(X, linear_transform, upsample_net, False)
if args.dataset not in ['protein']:
mses = ((y_hat - Y) ** 2).reshape(train_size, -1).mean(1).cpu().numpy() if config['patch']==False else ((y_hat - Y) ** 2).mean().cpu().numpy()
print("Training PSNR %.4f" % (20 * np.mean(np.log10(1 / mses ** 0.5))) + "; Training KL %.4f" % kls, flush=True)
else:
mses = ((y_hat - Y) ** 2).reshape(train_size, -1).mean(1).cpu().numpy() if config['patch']==False else ((y_hat - Y) ** 2).mean().cpu().numpy()
mses = mses * 3 # note that for rmsd, the mse of xyz should be summed instead of averaged up.
print("Training RMSD %.4f" % (np.mean(mses**0.5)*25) + "; Training KL %.4f" % kls, flush=True) # do not forget to scale back by 25
# save checkpoints
# get average log_scale of all training instances
average_training_log_scale = prior_model.log_scale.clone().detach().mean(0).cpu()
average_training_lpe_log_scale = prior_model.lpe_log_scale.clone().detach().mean([0]).flatten().cpu()
if config['patch']:
average_training_h_log_scale = prior_model.h_log_scale.clone().detach().mean([0]).flatten().cpu()
average_training_hh_log_scale = prior_model.hh_log_scale.clone().detach().mean([0]).flatten().cpu()
else:
average_training_h_log_scale = None
average_training_hh_log_scale = None
# get grouping by training set's average kl
q_loc = torch.cat([prior_model.loc.flatten(start_dim=1),
prior_model.lpe_loc.flatten(start_dim=1)], -1
)
q_scale = torch.cat([prior_model.st(prior_model.log_scale).flatten(start_dim=1),
prior_model.st(prior_model.lpe_log_scale).flatten(start_dim=1)], -1
)
p_loc = torch.cat([prior_loc.flatten(),
prior_lpe_loc.flatten()]
)
p_scale = torch.cat([prior_scale.flatten(),
prior_lpe_scale.flatten()]
)
group_idx, group_start_index, group_end_index, group2param, param2group, n_groups, group_kls, weights = get_grouping(
q_loc, q_scale, p_loc, p_scale)
if config['patch']:
h_p_loc = prior_h_loc
h_p_scale = prior_h_scale
h_q_loc = prior_model.h_loc
h_q_scale = prior_model.st(prior_model.h_log_scale)
h_group_idx, \
h_group_start_index, \
h_group_end_index, \
h_group2param, \
h_param2group, \
h_n_groups, \
h_group_kls, \
h_weights = get_grouping(
h_q_loc,
h_q_scale,
h_p_loc,
h_p_scale)
hh_p_loc = prior_hh_loc
hh_p_scale = prior_hh_scale
hh_q_loc = prior_model.hh_loc
hh_q_scale = prior_model.st(prior_model.hh_log_scale)
hh_group_idx, \
hh_group_start_index, \
hh_group_end_index, \
hh_group2param, \
hh_param2group, \
hh_n_groups, \
hh_group_kls, \
hh_weights = get_grouping(
hh_q_loc,
hh_q_scale,
hh_p_loc,
hh_p_scale)
h_p_loc = h_p_loc.cpu()
h_p_scale = h_p_scale.cpu()
hh_p_loc = hh_p_loc.cpu()
hh_p_scale = hh_p_scale.cpu()
else:
h_p_loc = None
h_p_scale = None
h_q_loc = None
h_q_scale = None
h_group_idx = None
h_group_start_index = None
h_group_end_index = None
h_group2param = None
h_param2group = None
h_n_groups = None
h_group_kls = None
h_weights = None
hh_p_loc = None
hh_p_scale = None
hh_q_loc = None
hh_q_scale = None
hh_group_idx = None
hh_group_start_index = None
hh_group_end_index = None
hh_group2param = None
hh_param2group = None
hh_n_groups = None
hh_group_kls = None
hh_weights = None
# save
file_name = "PRIOR_train_size_%d" % train_size + "_max_bitrate=%.3f.pkl" % args.max_bitrate
with open(args.saving_dir + file_name, "wb") as f:
pickle.dump(
(group_idx,
group_start_index,
group_end_index,
group2param,
param2group,
n_groups,
group_kls,
weights),
f)
pickle.dump(
(p_loc.cpu(),
p_scale.cpu(),
kl_beta,
torch.cat([average_training_log_scale, average_training_lpe_log_scale])),
f)
pickle.dump(
(h_group_idx,
h_group_start_index,
h_group_end_index,
h_group2param,
h_param2group,
h_n_groups,
h_group_kls,
h_weights),
f)
pickle.dump(
(h_p_loc,
h_p_scale,
kl_beta,
average_training_h_log_scale),
f)
pickle.dump(
(hh_group_idx,
hh_group_start_index,
hh_group_end_index,
hh_group2param,
hh_param2group,
hh_n_groups,
hh_group_kls,
hh_weights),
f)
pickle.dump(
(hh_p_loc,
hh_p_scale,
kl_beta,
average_training_hh_log_scale),
f)
pickle.dump(linear_transform.cpu(), f)
pickle.dump(upsample_net.cpu(), f)
linear_transform.to(args.device)
upsample_net.to(args.device)
file_name = "LOSS_train_size_%d" % train_size + "_max_bitrate=%.3f.pkl" % args.max_bitrate
with open(args.saving_dir + file_name, "wb") as f:
pickle.dump(ELBOs, f)
if __name__ == '__main__':
main()