MobileNetV1 是 Google 于 2017 年发布的用于移动设备或嵌入式设备中的网络。该网络将传统的卷积操作替换深度可分离卷积,即 Depthwise 卷积和 Pointwise 卷积的组合,相比传统的卷积操作,该组合可以大大节省参数量和计算量。与此同时,MobileNetV1 也可以用于目标检测、图像分割等其他视觉任务中。
目前 PaddleClas 开源的的移动端系列的预训练模型一共有 35 个,其指标如图所示。从图片可以看出,越新的轻量级模型往往有更优的表现,MobileNetV3 代表了目前主流的轻量级神经网络结构。在 MobileNetV3 中,作者为了获得更高的精度,在 global-avg-pooling 后使用了 1x1 的卷积。该操作大幅提升了参数量但对计算量影响不大,所以如果从存储角度评价模型的优异程度,MobileNetV3 优势不是很大,但由于其更小的计算量,使得其有更快的推理速度。此外,我们模型库中的 ssld 蒸馏模型表现优异,从各个考量角度下,都刷新了当前轻量级模型的精度。由于 MobileNetV3 模型结构复杂,分支较多,对 GPU 并不友好,GPU 预测速度不如 MobileNetV1。GhostNet 于 2020 年提出,通过引入 ghost 的网络设计理念,大大降低了计算量和参数量,同时在精度上也超过前期最高的 MobileNetV3 网络结构。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
MobileNetV1_x0_25 | 0.514 | 0.755 | 0.506 | 0.070 | 0.460 | |
MobileNetV1_x0_5 | 0.635 | 0.847 | 0.637 | 0.280 | 1.310 | |
MobileNetV1_x0_75 | 0.688 | 0.882 | 0.684 | 0.630 | 2.550 | |
MobileNetV1 | 0.710 | 0.897 | 0.706 | 1.110 | 4.190 | |
MobileNetV1_ssld | 0.779 | 0.939 | 1.110 | 4.190 |
Models | SD855 time(ms) bs=1, thread=1 |
SD855 time(ms) bs=1, thread=2 |
SD855 time(ms) bs=1, thread=4 |
Storage Size(M) |
---|---|---|---|---|
MobileNetV1_x0_25 | 2.88 | 1.82 | 1.26 | 1.900 |
MobileNetV1_x0_5 | 8.74 | 5.26 | 3.09 | 5.200 |
MobileNetV1_x0_75 | 17.84 | 10.61 | 6.21 | 10.000 |
MobileNetV1 | 30.24 | 17.86 | 10.30 | 16.000 |
MobileNetV1_ssld | 30.19 | 17.85 | 10.23 | 16.000 |
Models | Crop Size | Resize Short Size | FP32 Batch Size=1 (ms) |
FP32 Batch Size=4 (ms) |
FP32 Batch Size=8 (ms) |
---|---|---|---|---|---|
MobileNetV1_x0_25 | 224 | 256 | 0.47 | 0.93 | 1.39 |
MobileNetV1_x0_5 | 224 | 256 | 0.48 | 1.09 | 1.69 |
MobileNetV1_x0_75 | 224 | 256 | 0.55 | 1.34 | 2.03 |
MobileNetV1 | 224 | 256 | 0.64 | 1.57 | 2.48 |
MobileNetV1_ssld | 224 | 256 | 0.66 | 1.59 | 2.58 |
备注: 精度类型为 FP32,推理过程使用 TensorRT。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/MobileNetV1/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。