Skip to content

Latest commit

 

History

History
214 lines (158 loc) · 15.1 KB

README.md

File metadata and controls

214 lines (158 loc) · 15.1 KB

简体中文 | English

关键点检测系列模型

目录

简介

PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。

同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型PP-TinyPose,以满足用户的不同需求。

模型推荐

移动端模型推荐

检测模型 关键点模型 输入尺寸 COCO数据集精度 平均推理耗时 (FP16) 模型权重 Paddle-Lite部署模型(FP16)
PicoDet-S-Pedestrian PP-TinyPose 检测:192x192
关键点:128x96
检测mAP:29.0
关键点AP:58.1
检测耗时:2.37ms
关键点耗时:3.27ms
检测
关键点
检测
关键点
PicoDet-S-Pedestrian PP-TinyPose 检测:320x320
关键点:256x192
检测mAP:38.5
关键点AP:68.8
检测耗时:6.30ms
关键点耗时:8.33ms
检测
关键点
检测
关键点

*详细关于PP-TinyPose的使用请参考文档

服务端模型推荐

检测模型 关键点模型 输入尺寸 COCO数据集精度 模型权重
PP-YOLOv2 HRNet-w32 检测:640x640
关键点:384x288
检测mAP:49.5
关键点AP:77.8
检测
关键点
PP-YOLOv2 HRNet-w32 检测:640x640
关键点:256x192
检测mAP:49.5
关键点AP:76.9
检测
关键点

模型库

COCO数据集

模型 方案 输入尺寸 AP(coco val) 模型下载 配置文件
HigherHRNet-w32 Bottom-Up 512 67.1 higherhrnet_hrnet_w32_512.pdparams config
HigherHRNet-w32 Bottom-Up 640 68.3 higherhrnet_hrnet_w32_640.pdparams config
HigherHRNet-w32+SWAHR Bottom-Up 512 68.9 higherhrnet_hrnet_w32_512_swahr.pdparams config
HRNet-w32 Top-Down 256x192 76.9 hrnet_w32_256x192.pdparams config
HRNet-w32 Top-Down 384x288 77.8 hrnet_w32_384x288.pdparams config
HRNet-w32+DarkPose Top-Down 256x192 78.0 dark_hrnet_w32_256x192.pdparams config
HRNet-w32+DarkPose Top-Down 384x288 78.3 dark_hrnet_w32_384x288.pdparams config
WiderNaiveHRNet-18 Top-Down 256x192 67.6(+DARK 68.4) wider_naive_hrnet_18_256x192_coco.pdparams config
LiteHRNet-18 Top-Down 256x192 66.5 lite_hrnet_18_256x192_coco.pdparams config
LiteHRNet-18 Top-Down 384x288 69.7 lite_hrnet_18_384x288_coco.pdparams config
LiteHRNet-30 Top-Down 256x192 69.4 lite_hrnet_30_256x192_coco.pdparams config
LiteHRNet-30 Top-Down 384x288 72.5 lite_hrnet_30_384x288_coco.pdparams config

备注: Top-Down模型测试AP结果基于GroundTruth标注框

MPII数据集

模型 方案 输入尺寸 PCKh(Mean) PCKh([email protected]) 模型下载 配置文件
HRNet-w32 Top-Down 256x256 90.6 38.5 hrnet_w32_256x256_mpii.pdparams config

我们同时推出了基于LiteHRNet(Top-Down)针对移动端设备优化的实时关键点检测模型PP-TinyPose, 欢迎体验。

模型 输入尺寸 AP (COCO Val) 单人推理耗时 (FP32) 单人推理耗时(FP16) 配置文件 模型权重 预测部署模型 Paddle-Lite部署模型(FP32) Paddle-Lite部署模型(FP16)
PP-TinyPose 128*96 58.1 4.57ms 3.27ms Config Model 预测部署模型 Lite部署模型 Lite部署模型(FP16)
PP-TinyPose 256*192 68.8 14.07ms 8.33ms Config Model 预测部署模型 Lite部署模型 Lite部署模型(FP16)

快速开始

1、环境安装

​ 请参考PaddleDetection 安装文档正确安装PaddlePaddle和PaddleDetection即可。

2、数据准备

​ 目前KeyPoint模型支持COCO数据集和MPII数据集,数据集的准备方式请参考关键点数据准备

​ 关于config配置文件内容说明请参考关键点配置文件说明

  • 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考Detector having human AP of 56.4 on COCO val2017 dataset,下载后放在根目录(PaddleDetection)下,然后修改config配置文件中use_gt_bbox: False后生效。然后正常执行测试命令即可。

3、训练与测试

单卡训练

#COCO DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml

多卡训练

#COCO DataSet
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml

模型评估

#COCO DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml

#当只需要保存评估预测的结果时,可以通过设置save_prediction_only参数实现,评估预测结果默认保存在output/keypoints_results.json文件中
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml --save_prediction_only

模型预测

​ 注意:top-down模型只支持单人截图预测,如需使用多人图,请使用[联合部署推理]方式。或者使用bottom-up模型。

CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True

模型部署

Top-Down模型联合部署
#导出检测模型
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams 

#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams

#detector 检测 + keypoint top-down模型联合部署(联合推理只支持top-down方式)
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4  --device=gpu
Bottom-Up模型独立部署
#导出模型
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams

#部署推理
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
与多目标跟踪模型FairMOT联合部署预测
#导出FairMOT跟踪模型
python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

#用导出的跟踪和关键点模型Python联合预测
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU

注意: 跟踪模型导出教程请参考文档

引用

@inproceedings{cheng2020bottom,
  title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
  author={Bowen Cheng and Bin Xiao and Jingdong Wang and Honghui Shi and Thomas S. Huang and Lei Zhang},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{wang2019deep,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Wang, Jingdong and Sun, Ke and Cheng, Tianheng and Jiang, Borui and Deng, Chaorui and Zhao, Yang and Liu, Dong and Mu, Yadong and Tan, Mingkui and Wang, Xinggang and Liu, Wenyu and Xiao, Bin},
  journal={TPAMI},
  year={2019}
}

@InProceedings{Zhang_2020_CVPR,
    author = {Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
    title = {Distribution-Aware Coordinate Representation for Human Pose Estimation},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@inproceedings{Yulitehrnet21,
  title={Lite-HRNet: A Lightweight High-Resolution Network},
  author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
  booktitle={CVPR},
  year={2021}
}