-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbest_majvote_eval.py
executable file
·115 lines (99 loc) · 4.42 KB
/
best_majvote_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3.10
# -*- coding: utf-8 -*-
from __future__ import annotations
import itertools
import sys
from typing import TYPE_CHECKING, Union
import numpy as np
from sklearn.metrics import confusion_matrix
from algorithm import mcc_like_geo_youden as mcc
from best_majvote import FloatArray, IntArray, corr, list2np, list2npu, load, mode_uk
from util import zip_strict, zipstar_strict
if TYPE_CHECKING:
from typing import Iterable, Iterator, List, Optional, Sequence, Tuple
def getscore_combo(y_true: IntArray, y_preds: Tuple[IntArray, ...], y_us: Tuple[FloatArray, ...], k: int) -> float:
mpred = mode_uk(y_preds, y_us, k)
C = confusion_matrix(y_true, mpred)
return mcc(C)
if __name__ == '__main__':
cpaths: Sequence[str]
k_str, lblidx_str, *cpaths = sys.argv[1:]
k, lblidx = int(k_str), int(lblidx_str)
cpaths = tuple(cpaths)
if (len(cpaths) - k) % 2 == 0:
raise ValueError('Expected odd number of cpaths, got {}'.format(len(cpaths)))
numlabels: Optional[int] = None
y_true_l: Optional[List[Optional[bool]]] = None
if TYPE_CHECKING:
Pred = Union[str, IntArray]
U = Optional[FloatArray]
preds_list: List[Pred] = []
uncertainties_list: List[U] = []
for cpickle_path in cpaths:
if cpickle_path in ('ZEROS', 'ONES'):
# Dealt with later
preds_list.append(cpickle_path)
uncertainties_list.append(None)
continue
pkl = load(cpickle_path)
if numlabels is None:
numlabels = pkl['label_count']
else:
assert pkl['label_count'] == numlabels
pkl_true, pkl_preds, pkl_uncertainties = pkl['y_true'], pkl['y_pred'], pkl['y_u']
if y_true_l is None:
y_true_l = pkl_true
else:
assert len(pkl_true) == len(y_true_l)
assert all((x is None or x == y) for x, y in zip_strict(pkl_true, y_true_l))
assert len(pkl_preds) == len(pkl_uncertainties) == len(y_true_l)
preds_list.append(list2np(pkl_preds, numlabels)[:, lblidx])
uncertainties_list.append(list2npu(pkl_uncertainties, numlabels)[:, lblidx])
assert y_true_l is not None
assert numlabels is not None
y_true = list2np(y_true_l, numlabels)[:, lblidx]
del y_true_l
# Fill in 'ZEROS' and 'ONES' placeholders
def gen(any_pred: IntArray, preds_list: Iterable[Pred], uncertainties_list: Iterable[U]) \
-> Iterator[Tuple[IntArray, FloatArray]]:
for yp, ypu in zip_strict(preds_list, uncertainties_list):
if not isinstance(yp, str):
assert ypu is not None
yield yp, ypu
continue
if yp == 'ZEROS':
ypa = np.zeros_like(any_pred)
elif yp == 'ONES':
ypa = np.ones_like(any_pred)
else:
raise AssertionError
yield ypa, np.zeros(shape=any_pred.shape, dtype=np.float32)
any_pred: IntArray = next(p for p in preds_list if isinstance(p, np.ndarray))
y_preds, y_us = zipstar_strict(gen(any_pred, preds_list, uncertainties_list))
del any_pred, preds_list, uncertainties_list
score = getscore_combo(y_true, y_preds, y_us, k=k)
def lblscore(cpathi: int) -> Optional[float]:
if cpaths[cpathi] in ('ZEROS', 'ONES'):
return None # Weird numerical results, skip it
cpred = y_preds[cpathi]
C = confusion_matrix(y_true, cpred)
return mcc(C)
def lblu(cpathis: Tuple[int, ...]) -> Optional[float]:
if all(cpaths[i] in ('ZEROS', 'ONES') for i in cpathis):
return None # Value is artificial, skip it
cus = [y_us[i] for i in cpathis if cpaths[i] not in ('ZEROS', 'ONES')]
return float(np.mean(cus)) # type: ignore[arg-type]
combo = tuple(range(len(cpaths)))
print('Given combination (label {}):'.format(lblidx))
print(' Length: {}'.format(len(cpaths)))
print(' MCC: {}'.format(score))
print(' Uncertainty: {}'.format(lblu(combo)))
print(' Paths: {}'.format(cpaths))
if len(combo) > 1:
print(' Individual MCCs: {}'.format(tuple(map(lblscore, combo))))
print(' Individual uncertainties: {}'.format(tuple(lblu((cp,)) for cp in combo)))
print(' Correlations:')
for a, b in itertools.combinations(range(len(cpaths)), 2):
apred = y_preds[a]
bpred = y_preds[b]
print(' {} with {}: {}'.format(a, b, corr(apred, bpred)))