-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtag_all.py
executable file
·202 lines (157 loc) · 6.92 KB
/
tag_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import argparse
import csv
import os
import random
from functools import partial
from typing import TYPE_CHECKING, Callable, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Tuple, Union
import numpy as np
from sklearn.preprocessing import MultiLabelBinarizer
from datamunge import MLStratifiedGroupKFold
from util import Array, zip_strict
if TYPE_CHECKING:
StrPath = Union[str, 'os.PathLike[str]']
ORIG_DIR = 'orig'
CLASS_DIR = 'class'
WEIGHT_DIR = 'weight'
def seed_all(seed: int) -> None:
# See https://pytorch.org/docs/stable/notes/randomness.html
random.seed(seed)
np.random.seed(seed) # pytype: disable=module-attr
os.environ['PYTHONHASHSEED'] = str(seed)
def files(it: Iterable['os.DirEntry[str]']) -> Iterable['os.DirEntry[str]']:
return (e for e in it if e.is_file())
def dirs(it: Iterable['os.DirEntry[str]']) -> Iterable['os.DirEntry[str]']:
return (e for e in it if e.is_dir())
# Python equivalent of 'find "$dir" -maxdepth 1 -xtype f'
def dir_to_file_set(path: StrPath) -> Set[str]:
with os.scandir(path) as it:
return {entry.name for entry in files(it)}
def set_fweights(it: Iterable['os.DirEntry[str]'], weights: Dict[str, float], weight: float) -> None:
for wf in files(it):
if wf.name not in weights or weight > weights[wf.name]:
weights[wf.name] = weight
def write_file(fold: int, name: str, samples: Iterable[str], labels: Dict[str, Set[str]]) -> None:
folder = 'fold{}'.format(fold)
try:
os.mkdir(folder)
except FileExistsError:
pass
outfile = os.path.join(folder, '{}_tagged.csv'.format(name))
with open(outfile, 'w') as outf:
writer = csv.writer(outf)
writer.writerow(['image_name', 'tags'])
def write(fname: str) -> None:
f_labels = (cl for cl, membs in labels.items() if fname in membs)
writer.writerow([fname, ' '.join(f_labels)])
for fname in samples:
write(fname)
# NB: groups are retained but not enforced
def filter_dataset(X: Sequence[str], y: Array, groups: Array, cond: Callable[[str, Sequence[int]], bool]) \
-> Tuple[List[str], Array, Array]:
new_X = []
new_y = []
new_groups = []
for Xi, yi, gi in zip_strict(X, y, groups):
if cond(Xi, yi):
new_X.append(Xi)
new_y.append(yi)
new_groups.append(gi)
return new_X, np.asarray(new_y), np.asarray(new_groups)
def shuffle_dataset(X: Sequence[str], y: Array, groups: Array) -> Tuple[List[str], Array, Array]:
indices = np.arange(len(X))
np.random.shuffle(indices)
return [X[i] for i in indices], y[indices], groups[indices]
def train_test_split(
X: Sequence[str], y: Array, groups: Array, n_labels: int,
test_size: Optional[float] = None, n_splits: Optional[int] = None,
) -> Iterator[Tuple[List[str], List[str], Array, Array, Array, Array]]:
if (test_size is None) == (n_splits is None):
raise ValueError('expected one of test_size or n_splits')
stratifier = MLStratifiedGroupKFold(
n_labels=n_labels,
n_splits=2 if n_splits is None else n_splits,
fold_ratios=None if test_size is None else [test_size, 1 - test_size],
)
splits = stratifier.split(X, y, groups)
for train_indices, test_indices in splits:
X_train = [X[i] for i in train_indices]
X_test = [X[i] for i in test_indices]
yield X_train, X_test, y[train_indices], y[test_indices], groups[train_indices], groups[test_indices]
def apply_weights(X: Sequence[str], y: Array, weights: Dict[str, float]) \
-> Tuple[List[str], Array, Array]:
weighted_X = []
weighted_y = []
groups = []
def write(i: int, Xi: str, yi: Array) -> None:
weighted_X.append(Xi)
weighted_y.append(yi)
groups.append(i)
for i, (Xi, yi) in enumerate(zip_strict(X, y)):
weight = weights.get(Xi, 1)
if weight < 0 or np.isclose(weight, 0):
raise ValueError('Got negative weight: {}'.format(weight))
if np.isclose(weight, round(weight)):
weight_int, weight_float = round(weight), None
else:
weight_int = int(weight)
weight_float = weight - weight_int
for _ in range(weight_int): # Repeat N times if weight is N
write(i, Xi, yi)
if weight_float is not None:
if np.random.binomial(1, weight_float):
write(i, Xi, yi)
return weighted_X, np.stack(weighted_y), np.asarray(groups)
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument('--splits', type=int, metavar='N', default=5)
opts = parser.parse_args()
seed_all(24)
with os.scandir(CLASS_DIR) as it:
labels = {entry.name: dir_to_file_set(entry) for entry in it if entry.is_dir()}
with os.scandir(ORIG_DIR) as it:
X = list(entry.name for entry in it)
tags = [
[l for l, membs in labels.items() if fname in membs]
for fname in X
]
mlb = MultiLabelBinarizer()
y = mlb.fit_transform(tags)
weights: Dict[str, float] = {}
if os.path.isdir(WEIGHT_DIR):
with os.scandir(WEIGHT_DIR) as wdit:
for wdir in dirs(wdit):
with os.scandir(wdir) as wfit:
set_fweights(wfit, weights, float(wdir.name))
X, y, groups = apply_weights(X, y, weights)
for _ in range(5):
X, y, groups = shuffle_dataset(X, y, groups)
split = partial(train_test_split, n_labels=len(mlb.classes_))
trainable_X = X
trainable_y = y
trainable_groups = groups
test_only: Optional[tuple[List[str], Array, Array]] = None
if os.path.isdir('test_only'):
exclude = dir_to_file_set('test_only')
test_only = filter_dataset(X, y, groups, lambda Xi, _: Xi in exclude)
trainable_X, trainable_y, trainable_groups = filter_dataset(X, y, groups, lambda Xi, _: Xi not in exclude)
datafiles: Dict[str, List[str]] = {}
for n, fold in enumerate(split(trainable_X, trainable_y, trainable_groups, n_splits=opts.splits)):
train_X, not_train_X, train_y, not_train_y, train_groups, not_train_groups = fold
datafiles.clear()
datafiles['train'] = train_X
if test_only is not None:
test_only_X, test_only_y, test_only_groups = test_only
not_train_X.extend(test_only_X)
not_train_y = np.concatenate((not_train_y, test_only_y))
not_train_groups = np.concatenate((not_train_groups, test_only_groups))
not_train_X, not_train_y, not_train_groups = shuffle_dataset(not_train_X, not_train_y, not_train_groups)
opt_X, test_X, opt_y, test_y, _, _ = next(split(not_train_X, not_train_y, not_train_groups, test_size=.5))
datafiles['opt'] = opt_X
datafiles['test'] = test_X
for name in ('train', 'opt', 'test'):
write_file(n, name, datafiles[name], labels)
if __name__ == '__main__':
main()