-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMutInf.py
965 lines (770 loc) · 33 KB
/
MutInf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
import sys
import numpy as np
import os
import argparse
import config.settings as c
from tools import utils, traj_funcs
import matplotlib.pyplot as plt
import matplotlib.patheffects as pe
import MDAnalysis as mda
from MDAnalysis.analysis import rms, align, dihedrals
from MDAnalysis.analysis.distances import distance_array
import pandas as pd
from sklearn import metrics
import networkx as nx
from sklearn.cluster import SpectralClustering
from Bio import PDB
import time
from joblib import Parallel, delayed
import multiprocessing
def main(argv):
try:
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path",
action = "store",
dest = "path",
default = "unbiased_sims/apo_open/nobackup",
help = """Set path to the data directory.""")
parser.add_argument("-r", "--recalc",
action = "store_true",
dest = "recalc",
default = False,
help = """Chose whether the trajectory arrays
should be recomputed.""")
parser.add_argument("-w", "--windows",
action = "store_true",
dest = "windows",
default = False,
help = ("Calculate NMI matricies for windows"
"from umbrella sampling"))
parser.add_argument("-f", "--figpath",
action = "store",
dest = "fig_path",
default = "",
help = "Set a path destination for the "
"figure.")
parser.add_argument("-t", "--topol",
action = "store",
dest = "topol",
default = "topol_protein.top",
help = """File name for topology, inside the
path directory.""")
parser.add_argument("-x", "--xtc",
action = "store",
dest = "xtc",
default = "fitted_traj_100.xtc",
help = """File name for trajectory, inside
the path directory.""")
args = parser.parse_args()
except argparse.ArgumentError:
print("""Command line arguments are ill-defined, please check the
arguments""")
raise
# Assign group selection from argparse
data_path = f"{ c.data_head }/{ args.path }"
fig_path = f"{ c.figure_head }/{ args.fig_path }"
recalc = args.recalc
topol = args.topol
xtc = args.xtc
windows = args.windows
global analysis_path
# Check for valid paths
for p in [data_path, fig_path]:
utils.validate_path(p)
start_time = time.time()
# Store calculated outputs as dataframes etc.
analysis_path = f"{ os.path.dirname(data_path) }/analysis"
cluster_path = f"{ os.path.dirname(data_path) }/analysis/cluster"
if windows:
analysis_path = f"{ data_path }/analysis"
cluster_path = f"{ analysis_path }/cluster"
if not os.path.exists(analysis_path):
os.makedirs(analysis_path)
if not os.path.exists(cluster_path):
os.makedirs(cluster_path)
# Extract torsion data from the simulation or load from file
df_tor, u = get_torsions(data_path, topol, xtc, recalc=recalc)
# Determine the normalized mutual information for all torsion pairs
df_nmi = get_nmis(data_path, df_tor, recalc=recalc)
end_time = time.time()
print(f"\nThat took { end_time - start_time } seconds.\n")
if not (df_nmi.values == df_nmi.values.T).all().all():
print("ERROR: Non-symmetric NMI matrix.")
else:
print("The NMI matrix is symmetric.")
# Apply corrections to the NMI
df_corr = apply_nmi_corrections(df_tor, df_nmi, data_path)
# Check how sparse the matrix is
empty = df_corr.isna().sum().sum()
elements = df_corr.shape[0] ** 2
print((f"\nTOTAL: { elements }, EMPTY: { empty },\n"
f"RATIO: { np.round(empty / elements *100, 1) } %\n"))
# Analyze the NMI matrix by eigendecomposition
analyze_eigs(df_nmi, fig_path, descript="_full_torsion")
plot_mi_hist(df_nmi, fig_path, descript="_full_torsion")
analyze_eigs(df_corr, fig_path, descript="_full_torsion_corr")
plot_mi_hist(df_corr, fig_path, descript="_full_torsion_corr")
# Cluster using spectral clustering
clusters = get_clusters(df_nmi, 3, cluster_path, "_full_torsion")
# Make a plot of the torsion NMI matrix
plot_nmi(df_nmi, f"{ fig_path }/all_torsions_nmi.png")
# Determine the NMI between residue pairs, using a
# summation over the torsions
res_nmi = get_res_nmi(data_path, df_nmi, u, recalc=recalc,
corrected=False)
res_nmi_corr = get_res_nmi(data_path, df_corr, u, recalc=False,
corrected=True)
plot_nmi(res_nmi, f"{ fig_path }/residues_nmi.png")
plot_nmi(res_nmi_corr, f"{ fig_path }/residues_nmi_corr.png")
# Analyze the residue NMI matrix by eigendecomposition
analyze_eigs(res_nmi, fig_path, descript="_res")
plot_mi_hist(res_nmi, fig_path, descript="_res")
analyze_eigs(res_nmi_corr, fig_path, descript="_res_corr")
plot_mi_hist(res_nmi_corr, fig_path, descript="_res_corr")
# Use spectral clustering to put residues into clusters based on
# residue nmi values
clusters = get_clusters(res_nmi, 3, cluster_path, "_res_nmi_corr")
clusters_corr = get_clusters(res_nmi_corr, 3, cluster_path,
"_res_nmi_corr")
print(clusters)
visualize_clusters(clusters, cluster_path, "open_ref",
f"{ c.struct_head }/open_ref_state.pdb",
corrected=False)
visualize_clusters(clusters, cluster_path, "closed_ref",
f"{ c.struct_head }/closed_ref_state.pdb",
corrected=False)
visualize_clusters(clusters_corr, cluster_path, "open_ref",
f"{ c.struct_head }/open_ref_state.pdb",
corrected=True)
visualize_clusters(clusters_corr, cluster_path, "closed_ref",
f"{ c.struct_head }/closed_ref_state.pdb",
corrected=True)
sys.exit(1)
if not windows:
# Makes a (boolean) matrix for the residue contacts
contacts = identify_contacts(data_path, topol, xtc,
res_nmi, recalc=False)
plot_nmi(contacts, f"{ fig_path }/residue_contacts.png")
# Construct a network based on connected residues
res_graph = make_graph(res_nmi, contacts, data_path)
res_graph = make_graph(res_nmi_corr, contacts, data_path)
return None
def visualize_clusters(clusters, cluster_path, ref_name, ref_path,
corrected=False):
"""Visualize clusters by adding labels to pdb.
Parameters
----------
clusters : pd.Series
Cluster labels for each residue.
cluster_path : str
Path to the cluster analysis directory.
ref_name : str
Name of the structure, used in the output file.
Returns
-------
None.
"""
# Load in reference structure
pdb_parser = PDB.PDBParser(QUIET=True)
ref_struct = pdb_parser.get_structure(ref_name, ref_path)
# Make groups accessible by the residue id.
resid_clusts = {}
for key, group in clusters.items():
resid = int(key)
resid_clusts[resid] = group
# Number of clusters
n_clusts = len(set(clusters.values()))
# Set the beta factor values to the cluster group
for model in ref_struct:
for chain in model:
for residue in chain:
for atom in residue:
atom.set_bfactor(0.0)
r = residue.id[1]
residue["CA"].set_bfactor(resid_clusts[r])
# Save the modified structures for visualization
io = PDB.PDBIO()
io.set_structure(ref_struct)
if corrected:
io.save(f"{ cluster_path }/{ ref_struct.id }_{ n_clusts }clusters_corr.pdb")
else:
io.save(f"{ cluster_path }/{ ref_struct.id }_{ n_clusts }clusters.pdb")
return None
def get_clusters(df, n_clust, path, descript=""):
"""Determine clusters of the NMI matrix with spectral clustering.
Parameters
----------
df : pd.DataFrame
A symmetric matrix containing the normalized mutual information
for all torsion/residue pairs.
n_clust: int
Number of clusters to split data into.
path : str
Path for saving pandas series of classification markers.
descript : str
A short descriptor for naming csv file.
Returns
-------
clusters : pd.Series
Cluster labels for each node.
"""
# DataFrame stored as a csv file
df_file = f"{ path }/{ n_clust }clust{ descript }.csv"
# Use scikit-learn implemetation of spectral clustering
# affinity="precomputed" means the adjacency matrix is precomputed
clustering = SpectralClustering(
n_clusters=n_clust, assign_labels="discretize",
affinity="precomputed"
).fit(df.fillna(0))
# Make a dictionary for the clusters with torsions labeled
clusters = {}
for tor_lab, clust in zip(df.columns.to_list(), clustering.labels_):
clusters[tor_lab] = clust
# Convert to pd.Series and save to csv
series = pd.Series(clusters)
utils.save_df(series, df_file)
return clusters
def analyze_eigs(df, fig_path, descript=""):
"""Makes basic plots to understand NMI matrix eigendecomposition.
Parameters
----------
df : pd.DataFrame
A square DataFrame or any matrix object understandable by numpy,
which should undergo an eigendecomposition.
fig_path : str
Directory for storing the eigendecomposition figures.
descript : str
A short descriptor for naming plots.
Returns
-------
eigvals : np.ndarray
Array of ordered eigenvalues.
eigvecs : np.ndarray
2D array of orrdered eigenvectors.
"""
def plot_eigvals(eigvals, n, fig_path):
"""Makes a scree plot using the first n eigenvals.
"""
fig, ax = plt.subplots()
ax.scatter(np.arange(1, n+1), eigvals[:n], s=20)
utils.save_figure(fig, f"{ fig_path }/eigenvalues{ descript }.png")
plt.close()
eigvals, eigvecs = np.linalg.eig(df.fillna(0))
inds = eigvals.argsort()[::-1]
eigvals = eigvals[inds]
eigvecs = eigvecs[:,inds]
# Scree plot for the eigenvalues
plot_eigvals(eigvals, len(eigvals), fig_path)
# 2D scatter plots for major eigenvectors
fig, axes = plt.subplots(2,2)
axes = axes.flatten()
count = 0
for i, j in [(0,1),(0,2),(1,2)]:
ax = axes[count]
ax.scatter(eigvecs[:,i], eigvecs[:,j],
c=np.arange(1,len(eigvals)+1), marker="o")
ax.set_xlabel(f"{i + 1}")
ax.set_ylabel(f"{j + 1}")
count += 1
utils.save_figure(fig, f"{ fig_path }/2d_eigenvecs{ descript }.png")
plt.close()
# Make 3D plot of first 3 eigenvectors
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
c = ax.scatter(eigvecs[:,0], eigvecs[:,1], eigvecs[:,2])
ax.set_xlabel('Eigenvector 1', labelpad=25)
ax.set_ylabel('Eigenvector 2', labelpad=25)
ax.set_zlabel('Eigenvector 3', labelpad=25)
plt.close()
return eigvals, eigvecs
def get_torsions(path, topol, xtc, recalc=False):
"""Gets trajectories of phi, psi and chi torsions in a table.
Uses a MultiIndex'ed pandas DataFrame for storing the torsion
trajectories so individual residues or types of torsions can be
conveniently accessed.
Parameters
----------
path : str
Path to the directory with trajectory data.
topol : str
Name of the topol file, excluding solvent and counterions.
xtc : str
Name of the trajectory file for extracting dihedral data.
recalc : bool
Redetermine the table from simulation data, even if a DataFrame
is already saved to file.
Returns
-------
df_tor : pd.DataFrame
A DataFrame of the torsions with row indexing by trajectory
frame. A MultiIndex is used for the columns, with residue numbers
at the highest level and torsion labels at the secondary level,
(phi, psi, chi1, ..., chin).
u : mda.Universe
The relevant universe object.
"""
# DataFrame stored as a csv file
df_file = f"{ analysis_path }/torsions_df.csv"
# Load in universe objects for the simulation and the reference
# structures
u = mda.Universe(f"{ path }/{ topol }",
f"{ path }/{ xtc }",
topology_format='ITP')
# Load in the hierarchical DataFrame if it exists
if os.path.exists(df_file) and not recalc:
print(
"LOADING TORSIONS DataFrame FROM CSV..."
)
# Uses .hdf for heirarchical indexing
df_tor = pd.read_csv(df_file, header=0, index_col=0)
else:
print(
"EVALUATING TORSIONS WITH MDANALYSIS..."
)
# Use standard alignment procedure
# u = traj_funcs.do_alignment(u)
# Initialize DataFrame for all torsions
df_tor = pd.DataFrame()
# store all of the torsion AtomGroups
groups = []
labels = []
# Iterate over protein residues (exclude IPL)
for res in u.residues[:254]:
# Apply binning to each series
bin_edges = np.arange(-180,181)
# Convenience variables
res_id = res.resid
resn = res.resname
# Get AtomGroups of the residues torsions
group = [res.phi_selection(), res.psi_selection(),
res.chi1_selection()]
group.extend(get_chi_groups(res))
# Assign Phi and Psi and handle terminal residues
labs = [(f"{ resn }-{ res_id }-Phi"),
(f"{ resn }-{ res_id }-Psi"),]
# Assign any/all chi torsions for the residues
for c, g in enumerate(group[2:]):
ind = (f"{ resn }-{ res_id }-Chi-{ c + 1 }")
labs.append(ind)
# Filter our non-groups
group_filt = [g for g in group if g is not None ]
labs_filt = [l for l, g in zip(labs, group) if g is not None]
groups.extend(group_filt)
labels.extend(labs_filt)
# Determine torsions for all the AtomGroups
tors = dihedrals.Dihedral(groups).run()
t = tors.results.angles
# Convert torsions to dictionary object
tor_dict = {}
for lab, tor in zip(labels, zip(*t)):
tor_discrete = np.digitize(tor, bin_edges, right=False)
tor_dict[lab] = tor_discrete
# Convert the residues' torsions dictionary and concatenate
# with the DataFrame to combine with other residues
df_tor = pd.DataFrame(tor_dict)
# Format column names and save DataFrame to file
utils.save_df(df_tor, df_file)
return df_tor, u
def calc_MI(df_tor, tor1, tor2, norm_type="NMI"):
"""Determines the normalized mutual information between two torsions.
See Scikit-learn documentation for the mathematical description:
https://scikit-learn.org/0.18/modules/clustering.html#mutual-info-score
NMI https://scikit-learn.org/0.18/modules/generated/sklearn.metrics.normalized_mutual_info_score.html#sklearn.metrics.normalized_mutual_info_score
Adjusted NMI https://scikit-learn.org/0.18/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score
Parameters
----------
tor1 : pd.Series
Trajectory data in bins for torsion 1.
tor2 : pd.Series
Trajectory data in bins for torsion 2.
norm_type : str
Use a selection key (i.e. 'NMI', 'Adjusted') for the normalized
scoring function.
Returns
-------
nmi : float
The normalized mutual information of the two torsions.
"""
# Select algortithm for normalization
if norm_type == "NMI":
nmi = metrics.normalized_mutual_info_score(df_tor[tor1],
df_tor[tor2])
elif norm_type == "Adjusted":
nmi = metrics.adjusted_mutual_info_score(df_tor[tor1],
df_tor[tor2])
else:
print(f"Invalid 'norm_type' used : { norm_type }. "
"Select a valid function for normalization (i.e. 'NMI', "
"'Adjust'.)")
sys.exit(1)
return nmi, (tor1, tor2)
def get_nmis(path, df_tor, recalc=False):
"""Makes a matrix of the NMI for all torsion pairs.
See Scikit-learn documentation for the mathematical description:
https://scikit-learn.org/0.18/modules/clustering.html#mutual-info-score
NMI https://scikit-learn.org/0.18/modules/generated/sklearn.metrics.normalized_mutual_info_score.html#sklearn.metrics.normalized_mutual_info_score
Adjusted NMI https://scikit-learn.org/0.18/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score
Parameters
----------
path : str
Path to the directory with trajectory data.
df_tor : pd.DataFrame
A DataFrame of the torsions with row indexing by trajectory
frame. A MultiIndex is used for the columns, with residue numbers
at the highest level and torsion labels at the secondary level,
(phi, psi, chi1, ..., chin).
Returns
-------
df_nmi : pd.DataFrame
A symmetric matrix containing the normalized mutual information
for all torsion pairs.
"""
# DataFrame stored as a csv file
df_file = f"{ analysis_path }/nmis_df.csv"
if os.path.exists(df_file) and not recalc:
print(
"LOADING NMI DataFrame from CSV..."
)
df_nmis = pd.read_csv(df_file, header=0, index_col=0)
else:
print(
"EVALUATING NMIs with SCIKIT-LEARN..."
)
# Determine the number of CPU cores
total_cores = multiprocessing.cpu_count()
cores_to_use = int(0.8 * total_cores)
# Make a (symmetric) table with all NMI for residue pairs
df_nmis = pd.DataFrame(index=df_tor.columns, columns=df_tor.columns)
# Calculate MI for each pair of torsion columns in parallel
results = Parallel(n_jobs=cores_to_use)(delayed(calc_MI)(df_tor, col_i, col_j)
for i, col_i in enumerate(df_tor.columns)
for j, col_j in enumerate(df_tor.columns)
if i <= j)
# Update df_nmis with the calculated MI values
for nmi, (col_i, col_j) in results:
df_nmis.loc[col_i, col_j] = nmi
df_nmis.loc[col_j, col_i] = nmi
utils.save_df(df_nmis, df_file)
return df_nmis
def apply_nmi_corrections(df_tor, df_nmi, path):
"""Currently applies no actual changes to the matrix.
Parameters
----------
df_tor : pd.DataFrame
A DataFrame of the torsions with row indexing by trajectory frame. A MultiIndex
is used for the columns, with residue numbers at the highest level and torsion
labels at the secondary level, (phi, psi, chi1, ..., chin).
df_nmi : pd.DataFrame
A symmetric matrix containing the normalized mutual information for
all torsion pairs.
Returns
-------
df_corr : pd.DataFrame
A symmetric matrix containing the normalized mutual information for
all torsion pairs with statistical corrections applied.
"""
# for i in df_nmi.columns.to_list():
# # min_nmi = calc_MI(df_tor[i], df_tor[i].sample(frac=1).reset_index(drop=True))
# min_nmi = calc_MI(df_tor[i], df_tor[i][::-1])
# nmi_threshold[i] = min_nmi
# tor_features = {}
# for i in df_nmi.columns.to_list():
# unique = len(np.unique(df_tor[i]))
# tor_features[i] = (nmi_threshold[i], unique)
# with open(f"{ analysis_path }/tor_features.pickle", 'wb') as file:
# pickle.dump(tor_features, file)
# print(nmi_threshold)
# print(min(nmi_threshold.values()), max(nmi_threshold.values()))
df_corr = df_nmi.mask(df_nmi < 0.1, np.nan)
# if not (df_corr.values == df_corr.values.T).all().all():
# print("ERROR: Non-symmetric NMI matrix.")
# sys.exit(1)
return df_corr
def get_res_nmi(path, df, u, recalc=False, corrected=False):
"""Determines the residue NMI from torsional NMIs.
Parameters
----------
path : str
Path to the directory with trajectory data.
df : pd.DataFrame
A symmetric matrix containing the normalized mutual information
for all torsion pairs with or without statistical corrections
applied.
u : mda.Universe
The relevant universe object.
recalc : bool
Redetermine the table from simulation data, even if a DataFrame
is already saved to file.
corrected : bool
DataFrame should use raw or corrected NMI values.
Returns
-------
res_nmi : pd.DataFrame
A smaller matrix of the NMI between entire residues. Consists of
the sum of torsional NMIs between the residues.
"""
# DataFrame stored as a csv file
if corrected:
df_file = f"{ analysis_path }/res_nmi.csv"
else:
df_file = f"{ analysis_path }/res_nmi_corr.csv"
if os.path.exists(df_file) and not recalc:
print(
"LOADING RESIDUE NMI DataFrame from CSV..."
)
res_nmi = pd.read_csv(df_file, index_col=0, header=0)
else:
print(
"EVALUATING RESIDUE NMIs using TORSION PAIR NMIs..."
)
n = 254
res_nmi = pd.DataFrame(index=range(1, n + 1),
columns=range(1, n + 1))
for i in range(n):
df_resi = df.filter(regex=f"-{ i + 1 }-")
for j in range(254):
df_pair = df_resi.loc[df.index.str.contains(f"-{ j + 1 }-")]
count = df_pair.count().sum()
nmi_sum = df_pair.values.sum()
res_nmi.loc[i+1, j+1] = nmi_sum / count
res_nmi.loc[j+1, i+1] = nmi_sum / count
utils.save_df(res_nmi, df_file)
return res_nmi
def identify_contacts(path, topol, xtc, res_nmi, recalc=False):
"""Identifies which residues are considered as contacts.
Uses a contact threshhold of 5.5 AA for the heavy atoms for at
least 75% of the simulation data.
Based on https://doi.org/10.1016/bs.mie.2016.05.027 .
Parameters
----------
path : str
Path to the directory with trajectory data.
topol : str
Name of the topol file, excluding solvent and counterions.
xtc : str
Name of the trajectory file for extracting dihedral data.
res_nmi : pd.DataFrame
A matrix of the NMI between entire residues. Consists of the
sum of torsional NMIs between the residues.
recalc : bool
Redetermine the table from simulation data, even if a DataFrame
is already saved to file.
Returns
-------
df_contacts : pd.DataFrame
Boolean values are used to construct contact matrix.
"""
# DataFrame stored as a csv file
df_file = f"{ analysis_path}/res_contacts.csv"
if os.path.exists(df_file) and not recalc:
print(
"LOADING RESIDUE CONTACT DataFrame FROM CSV..."
)
df_contacts = pd.read_csv(df_file, index_col=0, header=0)
else:
print(
"EVALUATING RESIDUE-RESIDUE CONTACT PAIRS as BOOLEAN "
"with MDANALYSIS..."
)
n = res_nmi.columns
df_contacts = pd.DataFrame(index=n, columns=n)
core_res, core = traj_funcs.get_core_res()
# Not all data is needed to determine if residues are in contact
stride = 100
# Load in universe objects for the simulation and the reference structures
u = mda.Universe(f"{ path }/{ topol }", f"{ path }/{ xtc }",
topology_format='ITP')
total_frames = int(len(u.trajectory) / stride)
print("\tTOTAL FRAMES ", total_frames)
align.AlignTraj(u, u.select_atoms("protein"), select=core,
in_memory=True).run()
# Iterate over residues
for resi in u.residues:
resi_id = resi.resid
resin = resi.resname
name_i = f"{ resin } { resi_id }"
resi_heavy = u.select_atoms(f"resid { resi_id } and not name H*")
contact_counts = {}
for ts in u.trajectory[::stride]:
# Calculate distances between the heavy atoms of the
# target residue and all atoms
dists = distance_array(resi_heavy.positions,
u.atoms.positions)
# Identify atoms in contact based on the distance
# threshold 5.5 AA
# The method .any() qualifies the atom if it contacts any
# heavy atom in the target
in_contact = (dists < 5.5).any(axis=0)
# Update contact counts for each residue
for resj in u.residues:
resj_id = resj.resid
resjn = resj.resname
name_j = f"{ resjn } { resj_id }"
# Add to count if the residues qualifies
if name_j not in contact_counts:
contact_counts[name_j] = 0
if in_contact[resj.atoms.indices].sum() > 0:
contact_counts[name_j] += 1
# Identify residues in contact for at least 75% of the frames
contact_percentage = 0.75
contact_residues = [res for res, count in contact_counts.items()
if count >= total_frames * contact_percentage]
print(f"CONTACTS FOR { name_i } : ", contact_residues)
for resj in u.residues:
resj_id = resj.resid
resjn = resj.resname
name_j = f"{ resjn } { resj_id }"
df_contacts.loc[name_i, name_j] = (name_j in contact_residues)
df_contacts.loc[name_j, name_i] = (name_j in contact_residues)
utils.save_df(df_contacts, df_file)
print(df_contacts)
return df_contacts
def make_graph(res_nmi, contacts, path, corr=False):
"""Makes a network weighted by NMI.
Each residue forms a node, while the contacts determine the graph edges.
The weight for each edge is the NMI of the connected residues and
the network object is saved as a ".gexf".
Parameters
----------
res_nmi : pd.DataFrame
A smaller matrix of the NMI between entire residues. Consists of the
sum of torsional NMIs between the residues.
contacts : pd.DataFrame
Boolean values are used to construct contact matrix.
path : str
Path for storing the network object as a ".gexf" which can be
visualized with Gephi.
Returns
"""
g = nx.Graph()
# Add all residues as nodes in the graph
all_res = res_nmi.columns.to_list()
g.add_nodes_from(all_res)
count = 0
for i, res1 in enumerate(all_res):
for j, res2 in enumerate(all_res):
if (i < j) & (contacts.loc[res1, res2]):
count +=1
g.add_edge(res1, res2, weight=-np.log(res_nmi.loc[res1,res2]))
print(type(g))
if corr:
nx.write_gexf(g, f"{ analysis_path }/connected_residues_corr.gexf")
else:
nx.write_gexf(g, f"{ analysis_path }/connected_residues.gexf")
return g
def get_chi_groups(res):
"""Get the groups involved in all the chi2+ dihedral groups.
See a list of the chi dihedrals at
http://www.mlb.co.jp/linux/science/garlic/doc/commands/dihedrals.html.
The dihedrals beyond chi1 are considered here.
Parameters
----------
res : MDAnalysis.core.groups.Residue
Residue object for selecting relevant AtomGroup.
Returns
-------
chi_groups : ((AtomGroup) list) list
A list of list of AtomGroups, where each entry correspond to the
chi dihedrals beyond chi1.
"""
if res.resname in ["ALA", "GLY", "VAL", "CYS", "SER", "THR"]:
return [] # No chi dihedral greater than 1
# Identify chi atoms based on the residue type
if res.resname == "ARG":
chi_atoms = ["CA", "CB", "CG", "CD", "NE", "CZ", "NH1"]
elif res.resname == "LYS":
chi_atoms = ["CA", "CB", "CG", "CD", "CE", "NZ"]
elif res.resname == "LYN":
chi_atoms = ["CA", "CB", "CG", "CD", "CE", "NZ"]
elif res.resname == "MET":
chi_atoms = ["CA", "CB", "CG", "SD", "CE"]
elif res.resname == "GLN":
chi_atoms = ["CA", "CB", "CG", "CD", "OE1"]
elif res.resname == "GLU":
chi_atoms = ["CA", "CB", "CG", "CD", "OE1"]
elif res.resname == "ASN":
chi_atoms = ["CA", "CB", "CG", "OD1"]
elif res.resname == "ASP":
chi_atoms = ["CA", "CB", "CG", "OD1"]
elif res.resname == "HIS":
chi_atoms = ["CA", "CB", "CG", "ND1"]
elif res.resname == "ILE":
chi_atoms = ["CA", "CB", "CG1", "CD"]
elif res.resname == "LEU":
chi_atoms = ["CA", "CB", "CG", "CD1"]
elif res.resname == "PRO":
chi_atoms = ["CA", "CB", "CG", "CD"]
elif res.resname == "PHE":
chi_atoms = ["CA", "CB", "CG", "CD1"]
elif res.resname == "TRP":
chi_atoms = ["CA", "CB", "CG", "CD1"]
elif res.resname == "TYR":
chi_atoms = ["CA", "CB", "CG", "CD1"]
chi_atom_lists = []
for i in range(len(chi_atoms) - 3):
chi_atom_lists.append(chi_atoms[i:i+4])
chi_groups = []
for c in chi_atom_lists:
chi_groups.append([a for a in res.atoms if a.name in c])
return chi_groups
def plot_nmi(df, fig_path):
"""Makes a plot depicting the NMI matrix.
Parameters
----------
df : pd.DataFrame
A symmetric matrix containing the normalized mutual information for
all torsion pairs.
fig_path : str
Path to the figure image file.
Returns
-------
None.
"""
fig, ax = plt.subplots(constrained_layout=True, figsize=(12,12))
cax = ax.matshow(df.astype(np.float32), cmap='YlGnBu')
cbar = plt.colorbar(cax, shrink=0.75)
if len(df.columns) > 500:
cols = list(df.columns)
label_pos = [i for i, label in enumerate(cols) if i % 100 == 0]
label_names = [label.split("-")[1] for i, label in enumerate(cols) if i % 100 == 0]
else:
cols = list(df.columns)
label_pos = [i for i, label in enumerate(cols) if i % 20 == 0]
label_names = [label for i, label in enumerate(cols) if i % 20 == 0]
plt.xticks(label_pos, label_names, rotation=45)
plt.yticks(label_pos, label_names)
ax.set_xlabel("Residue ID")
ax.set_ylabel("Residue ID")
cbar.ax.tick_params(labelsize=20, direction='out', width=2, length=5)
cbar.outline.set_linewidth(2)
ax.grid(False)
utils.save_figure(fig, fig_path)
plt.close()
return None
def plot_mi_hist(df, fig_path, descript=""):
"""Plots a histogram of all torsion pair NMIs.
Parameters
----------
df : pd.DataFrame
A symmetric matrix containing the normalized mutual information
for all torsion pairs.
fig_path : str
Path to the directory for saving the figure image.
descript : str
A short descriptor for naming plots.
Returns
-------
None.
"""
fig, ax = plt.subplots()
ax.hist(df.values.flatten(), bins=50, color='#cc4bb0', edgecolor='black',
density=True)
ax.grid(axis='y', linestyle='--', alpha=0.7)
ax.set_xlabel("NMI")
ax.set_ylabel("frequency")
ax.set_xlim(0,1)
utils.save_figure(fig, f"{ fig_path }/nmi_histogram{ descript }.png")
plt.close()
return None
if __name__ == '__main__':
main(sys.argv)