-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit_train.py
267 lines (216 loc) · 7.78 KB
/
vit_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import os
from functools import partial
from glob import glob
import math
import torch
import torch.nn as nn
import numpy as np
from transformers import TrainingArguments
from transformers import Trainer
from transformers import TrainerCallback
from dinov2.models import DINOv2, DINOv2Config
from dinov2.data import MaskingGenerator, DINOAugmentation, BaseDataset, collate_data_and_cast
class CosineScheduler(object):
def __init__(self, base_value, final_value, total_iters, warmup_iters=0, start_warmup_value=0, freeze_iters=0):
super().__init__()
self.final_value = final_value
self.total_iters = total_iters
freeze_schedule = np.zeros((freeze_iters))
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(total_iters - warmup_iters - freeze_iters)
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
self.schedule = np.concatenate((freeze_schedule, warmup_schedule, schedule))
assert len(self.schedule) == self.total_iters
def __getitem__(self, it):
if it >= self.total_iters:
return self.final_value
else:
return self.schedule[it]
def build_schedulers(config, num_training_steps):
lr = config.base_lr
lr *= math.sqrt(config.batch_size / 1024)
lr = dict(
base_value=lr,
final_value=config.min_lr,
total_iters=num_training_steps,
warmup_iters=int(config.lr_warmup_percentile * num_training_steps),
)
wd = dict(
base_value=config.weight_decay,
final_value=config.weight_decay_end,
total_iters=num_training_steps,
)
momentum = dict(
base_value=config.momentum_teacher,
final_value=config.final_momentum_teacher,
total_iters=num_training_steps,
)
teacher_temp = dict(
base_value=config.teacher_temp,
final_value=config.teacher_temp,
total_iters=int(config.teacher_temp_warmup_percentile * num_training_steps),
warmup_iters=int(config.teacher_temp_warmup_percentile * num_training_steps),
start_warmup_value=config.warmup_teacher_temp,
)
lr_schedule = CosineScheduler(**lr)
wd_schedule = CosineScheduler(**wd)
momentum_schedule = CosineScheduler(**momentum)
teacher_temp_schedule = CosineScheduler(**teacher_temp)
last_layer_lr_schedule = CosineScheduler(**lr)
return (
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
)
class DINOv2Trainer(Trainer):
def create_optimizer_and_scheduler(self, num_training_steps: int):
params_groups = self.model.get_params_groups()
self.optimizer = torch.optim.AdamW(
params_groups,
betas=(0.9, 0.999),
)
(
self.lr_schedule,
self.wd_schedule,
self.momentum_schedule,
self.teacher_temp_schedule,
self.last_layer_lr_schedule,
) = build_schedulers(self.model.config, num_training_steps)
self.create_scheduler(num_training_steps)
def update_teacher(self, m):
student_param_list = []
teacher_param_list = []
with torch.no_grad():
for src, dst in zip(self.model.student.parameters(),
self.model.teacher.parameters()):
dst.data = dst.data * m + src.data * (1 - m)
def create_optimizer(self, num_training_steps):
class DummyScheduler(object):
def __init__(self):
super().__init__()
def step(self):
pass
self.lr_scheduler = DummyScheduler()
def training_step(
self,
model,
inputs,
) -> torch.Tensor:
lr = self.lr_schedule[self.state.global_step]
wd = self.wd_schedule[self.state.global_step]
mom = self.momentum_schedule[self.state.global_step]
teacher_temp = self.teacher_temp_schedule[self.state.global_step]
last_layer_lr = self.last_layer_lr_schedule[self.state.global_step]
for param_group in self.optimizer.param_groups:
is_last_layer = param_group['is_last_layer']
lr_multiplier = param_group["lr_multiplier"]
wd_multiplier = param_group["wd_multiplier"]
param_group["weight_decay"] = wd * wd_multiplier
param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier
log_params = dict()
for param_group in self.optimizer.param_groups:
if 'patch_embed' in param_group['name']:
log_param = dict()
name = param_group['name']
for key in ['weight_decay', 'lr']:
log_param[f'{name}_{key}'] = param_group[key]
log_params.update(log_param)
log_params.update({
'lr': lr,
'wd': wd,
'momentum': mom,
'teacher_temp': teacher_temp,
})
self.log(log_params)
inputs['teacher_temp'] = teacher_temp
ret = super(DINOv2Trainer, self).training_step(
model=model,
inputs=inputs,
)
self.update_teacher(mom)
return ret
def read_filename(filename):
lines = []
f = open(filename, 'r')
while True:
line = f.readline()
if not line: break
line = line.replace('\n', '')
lines.append(line)
f.close()
return lines
def main():
config = DINOv2Config(
embed_dim=384,
num_heads=6,
batch_size=4096,
base_lr=0.002,
lr_warmup_percentile=float(3 / 100),
teacher_temp_warmup_percentile=float(10 / 100),
)
model = DINOv2(config)
filenames = list()
for filename in [
'data_lists/test.txt',
]:
filenames.extend(read_filename(filename))
image_size = config.img_size
patch_size = config.patch_size
n_tokens = (image_size // patch_size) ** 2
mask_generator = MaskingGenerator(
input_size=(image_size // patch_size, image_size // patch_size),
max_num_patches=0.5 * image_size // patch_size * image_size // patch_size,
)
transforms = DINOAugmentation(
global_crops_scale=config.global_crops_scale,
local_crops_scale=config.local_crops_scale,
local_crops_number=config.local_crops_number,
global_crops_size=config.img_size,
local_crops_size=config.local_crops_size,
)
dataset = BaseDataset(
filenames,
transforms=transforms,
)
collate_fn = partial(
collate_data_and_cast,
mask_ratio_tuple=(0.1, 0.5),
mask_probability=0.5,
n_tokens=n_tokens,
mask_generator=mask_generator,
dtype=torch.float32,
)
batch_size = model.config.batch_size
per_device_train_batch_size = int(batch_size / int(os.environ['WORLD_SIZE']))
training_args = TrainingArguments(
output_dir='checkpoint-dinov2-100ep/model',
logging_dir='checkpoint-dinov2-100ep/logs',
logging_steps=5,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=1,
save_strategy='epoch',
report_to='tensorboard',
do_train=True,
num_train_epochs=100,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={
'use_reentrant': False,
},
fp16=False,
bf16=False,
max_grad_norm=model.config.clip_grad,
dataloader_num_workers=4,
save_safetensors=True,
)
trainer = DINOv2Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=collate_fn,
)
trainer.train()
if __name__ == '__main__':
main()