-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathMountainCar_ppo_icm.py
200 lines (160 loc) · 7.03 KB
/
MountainCar_ppo_icm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from envs import *
from utils import *
from config import *
from ppo_agent import *
from torch.multiprocessing import Pipe
from tensorboardX import SummaryWriter
import numpy as np
class Environment(Process):
def __init__(self, is_render, env_idx, child_conn):
super(Environment, self).__init__()
self.daemon = True
self.env = gym.make('MountainCar-v0')
self.is_render = is_render
self.env_idx = env_idx
self.steps = 0
self.episode = 0
self.rall = 0
self.recent_rlist = deque(maxlen=100)
self.child_conn = child_conn
self.reset()
def run(self):
super(Environment, self).run()
while True:
action = self.child_conn.recv()
if self.is_render:
self.env.render()
obs, reward, done, _ = self.env.step(action)
self.rall += reward
self.steps += 1
if done:
print("[Episode {}({})] Step: {} Reward: {}".format(
self.episode, self.env_idx, self.steps, self.rall))
obs = self.env.reset()
self.rall = 0
self.steps = 0
self.episode += 1
self.child_conn.send([obs, reward, done])
def reset(self):
self.steps = 0
s = self.env.reset()
return s
if __name__ == '__main__':
num_worker = 16
works = []
parent_conns = []
child_conns = []
pre_obs_norm_step = 10000
input_size = 2
output_size = 3
num_step = 256
gamma = 0.99
is_render = True
reward_rms = RunningMeanStd()
obs_rms = RunningMeanStd(1, 2)
discounted_reward = RewardForwardFilter(gamma)
agent = MlpICMAgent(input_size, output_size, num_worker,
num_step, gamma, use_cuda=True)
output_size = 3
for idx in range(num_worker):
parent_conn, child_conn = Pipe()
work = Environment(is_render, idx, child_conn)
work.start()
works.append(work)
child_conns.append(child_conn)
parent_conns.append(parent_conn)
steps = 0
next_obs = []
print('Start to initialize observation normalization ...')
while steps < pre_obs_norm_step:
steps += num_worker
actions = np.random.randint(0, output_size, size=(num_worker, ))
for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)
for parent_conn in parent_conns:
s, r, d = parent_conn.recv()
next_obs.append(s)
print('initializing...:', steps, '/', pre_obs_norm_step)
next_obs = np.stack(next_obs)
obs_rms.update(next_obs)
print('End to initialize')
states = np.zeros([num_worker, 2])
global_update = 0
global_step = 0
sample_i_rall = 0
sample_episode = 0
sample_env_idx = 0
sample_rall = 0
writer = SummaryWriter()
int_coef = 0.01
large_scale_version = True
while True:
total_state, total_reward, total_done, total_next_state, \
total_action, total_int_reward, total_next_obs, total_values,\
total_policy, total_combine_reward = [], [], [], [], [], [], [], [], [], []
global_step += (num_step * num_worker)
global_update += 1
for _ in range(num_step):
#agent.model.eval(), agent.icm.eval()
actions, value, policy = agent.get_action((np.float32(states) - obs_rms.mean)/np.sqrt(obs_rms.var))
for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)
next_states, rewards, dones, real_dones, next_obs = [], [], [], [] ,[]
for parent_conn in parent_conns:
s, r, d = parent_conn.recv()
next_states.append(s)
rewards.append(r)
dones.append(d)
next_states = np.stack(next_states)
rewards = np.hstack(rewards)
dones = np.hstack(dones)
intrinsic_reward = agent.compute_intrinsic_reward(
(states - obs_rms.mean)/np.sqrt(obs_rms.var),
(next_states - obs_rms.mean)/np.sqrt(obs_rms.var),
actions)
intrinsic_reward = np.hstack(intrinsic_reward)
combine_reward = (1-int_coef) * rewards + int_coef * intrinsic_reward
sample_i_rall += intrinsic_reward[sample_env_idx]
sample_rall += rewards[sample_env_idx]
total_combine_reward.append(combine_reward)
total_int_reward.append(intrinsic_reward)
total_state.append(states)
total_next_state.append(next_states)
total_reward.append(rewards)
total_done.append(dones)
total_action.append(actions)
total_values.append(value)
total_policy.append(policy)
states = next_states[:, :]
if dones[sample_env_idx]:
sample_episode += 1
writer.add_scalar('data/reward_per_epi', sample_rall, sample_episode)
sample_i_rall = 0
sample_rall = 0
_, value, _ = agent.get_action((np.float32(states) - obs_rms.mean) / np.sqrt(obs_rms.var))
total_values.append(value)
total_state = np.stack(total_state).transpose([1, 0, 2]).reshape([-1, 2])
total_next_state = np.stack(total_next_state).transpose([1, 0, 2]).reshape([-1, 2])
total_action = np.stack(total_action).transpose().reshape([-1])
total_reward = np.stack(total_reward).transpose()
total_done = np.stack(total_done).transpose()
total_values = np.stack(total_values).transpose()
total_logging_policy = np.vstack(total_policy)
total_combine_reward = np.stack(total_combine_reward).transpose()
total_reward_per_env = np.array([discounted_reward.update(reward_per_step) for reward_per_step in
total_combine_reward.T])
mean, std, count = np.mean(total_reward_per_env), np.std(total_reward_per_env), len(total_reward_per_env)
reward_rms.update_from_moments(mean, std ** 2, count)
total_combine_reward /= np.sqrt(reward_rms.var)
writer.add_scalar('data/int_reward_per_epi', np.sum(total_combine_reward)/num_worker, sample_episode)
writer.add_scalar('data/int_reward_per_rollout', np.sum(total_combine_reward) / num_worker, global_update)
writer.add_scalar('data/max_prob', softmax(total_logging_policy).max(1).mean(), sample_episode)
if large_scale_version: flag = np.zeros_like(total_combine_reward)
else: flag = total_done
target ,adv = make_train_data_icm(total_combine_reward, flag, total_values, gamma, num_step, num_worker)
adv = (adv - np.mean(adv)) / (np.std(adv) + 1e-8)
print('training')
agent.train_model((np.float32(total_state) - obs_rms.mean )/ np.sqrt(obs_rms.var),
(np.float32(total_next_state) - obs_rms.mean) / np.sqrt(obs_rms.var),
target, total_action,
adv, total_policy)