-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtrain_reinforce_gym.py
142 lines (120 loc) · 5.02 KB
/
train_reinforce_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""An example of training a REINFORCE agent against OpenAI Gym envs.
This script is an example of training a REINFORCE agent against OpenAI Gym
envs. Both discrete and continuous action spaces are supported.
To solve CartPole-v0, run:
python train_reinforce_gym.py
To solve InvertedPendulum-v1, run:
python train_reinforce_gym.py --env InvertedPendulum-v1
"""
import argparse
import os
import chainer
import gym
import gym.spaces
import numpy as np
import chainerrl
from chainerrl import experiments
from chainerrl import misc
def main():
import logging
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--beta', type=float, default=1e-4)
parser.add_argument('--batchsize', type=int, default=10)
parser.add_argument('--steps', type=int, default=10 ** 5)
parser.add_argument('--eval-interval', type=int, default=10 ** 4)
parser.add_argument('--eval-n-runs', type=int, default=100)
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--render', action='store_true', default=False)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
parser.add_argument('--monitor', action='store_true')
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set a random seed used in ChainerRL.
misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = experiments.prepare_output_dir(args, args.outdir)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if args.render and not test:
env = chainerrl.wrappers.Render(env)
return env
train_env = make_env(test=False)
timestep_limit = train_env.spec.max_episode_steps
obs_space = train_env.observation_space
action_space = train_env.action_space
# Switch policy types accordingly to action space types
if isinstance(action_space, gym.spaces.Box):
model = chainerrl.policies.FCGaussianPolicyWithFixedCovariance(
obs_space.low.size,
action_space.low.size,
var=0.1,
n_hidden_channels=200,
n_hidden_layers=2,
nonlinearity=chainer.functions.leaky_relu,
)
else:
model = chainerrl.policies.FCSoftmaxPolicy(
obs_space.low.size,
action_space.n,
n_hidden_channels=200,
n_hidden_layers=2,
nonlinearity=chainer.functions.leaky_relu,
)
# Draw the computational graph and save it in the output directory.
chainerrl.misc.draw_computational_graph(
[model(np.zeros_like(obs_space.low, dtype=np.float32)[None])],
os.path.join(args.outdir, 'model'))
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu(args.gpu)
opt = chainer.optimizers.Adam(alpha=args.lr)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(1))
agent = chainerrl.agents.REINFORCE(
model, opt, beta=args.beta, batchsize=args.batchsize)
if args.load:
agent.load(args.load)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=train_env,
eval_env=eval_env,
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
train_max_episode_len=timestep_limit)
if __name__ == '__main__':
main()