-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathoutline
37 lines (28 loc) · 957 Bytes
/
outline
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
14 topics by CEATEC
- 001 introduction
-- what is machine learning / deep learning ?
- 002 basic of chainer
-- feedforward networks (example mnist linear, relu, backprop)
specific neural networks
- 003 cnn, image
-- (example ImageNet, convolutional layer, maxpool, - alexnet, resnet
- 004 rnn, nlp
-- example LSTM
-- word2vec (example word2vec, EmbedID)
- 005 deep generative models
-- VAE, GAN
component of neural networks
- 006 activation functions
-- (relu, prelu, elu, sigmoid, tanh)
- 007 regularization
-- (dropout, L2norm)
- 008 optimizers
-- (adagrad, adam, RMSprop)
- faster training (BatchNorm)
- loss (sigmoid_cross_entropy, mean_squared_error)
misc
- numpy, cupy
- using pretrained model (http://qiita.com/tabe2314/items/6c0c1b769e12ab1e2614)
- speech recognition (example maybe translate this into chainer https://github.com/pannous/tensorflow-speech-recognition)
- deep generative models (example VAE)
- k-means and k-means++ by cupy