-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgan_toy.py
168 lines (139 loc) · 5.82 KB
/
gan_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
import numpy as np
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import models
def build_dataloader(batch_size): # mix of 8 Gaussians (https://github.com/igul222/improved_wgan_training)
scale = 2.
centers = [
(1, 0),
(-1, 0),
(0, 1),
(0, -1),
(1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)),
(-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))
]
centers = [(scale * x, scale * y) for x, y in centers]
while True:
dataset = []
for _ in xrange(batch_size):
point = np.random.randn(2) * .02
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)
dataset = np.array(dataset, dtype='float32')
dataset /= 1.414 # stdev
yield dataset
class Logger(object):
def __init__(self, netG, netD, outf, nfreq=500):
self.netG = netG
self.netD = netD
self.outf = outf
self.nfreq = nfreq
self.loss, self.alpha, self.omega = [], [], []
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.z = torch.randn(512, 2).to(self.device) # for plot
def plot(self, i):
fig, ax = plt.subplots()
ax.set_xlim(-3,3)
ax.set_ylim(-3,3)
# --- distribution of G
self.netG.eval()
with torch.no_grad():
x = self.netG(self.z).detach().cpu().numpy().squeeze()
ax.scatter(x[:,0], x[:,1], alpha=0.1)
self.netG.train()
# --- contour of D
x1 = x2 = np.linspace(-3, 3, 128)
x1, x2 = np.meshgrid(x1, x2)
x = np.hstack((x1.reshape(-1,1), x2.reshape(-1,1)))
x = torch.tensor(x, dtype=torch.float32).to(self.device)
self.netD.eval()
with torch.no_grad():
y = self.netD(x).detach().cpu().numpy().squeeze()
self.netD.train()
ax.contour(x1, x2, y.reshape(x1.shape))
fig.savefig('{}/x_{}.png'.format(self.outf, i))
plt.close(fig)
# --- loss
fig, axs = plt.subplots(3, 1, sharex=True)
axs[0].set_ylabel('IPM')
axs[0].semilogy(self.loss)
axs[1].set_ylabel(r'$\alpha$')
axs[1].plot(self.alpha)
axs[2].set_ylabel(r'$\Omega$')
axs[2].plot(self.omega)
axs[2].set_xlabel('iteration')
fig.savefig('{}/loss.png'.format(self.outf))
plt.close(fig)
def dump(self, i, loss, alpha, omega):
self.loss.append(loss)
self.alpha.append(alpha)
self.omega.append(omega)
if i % self.nfreq == 0:
self.plot(i)
np.save('{}/loss.npy'.format(self.outf), np.array(self.loss))
np.save('{}/alpha.npy'.format(self.outf), np.array(self.alpha))
np.save('{}/omega.npy'.format(self.outf), np.array(self.omega))
def main(args):
cudnn.benchmark = True
os.system('mkdir -p {}'.format(args.outf))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataloader = build_dataloader(args.batch_size)
netG = models.FC_G().to(device)
netD = models.FC_D().to(device)
z = torch.FloatTensor(args.batch_size, 2).to(device)
alpha = torch.tensor(args.alpha).to(device)
optimizerG = optim.Adam(netG.parameters(), lr=args.lr, betas=(0.5, 0.9), amsgrad=True)
optimizerD = optim.Adam(netD.parameters(), lr=args.lr, betas=(0.5, 0.9), amsgrad=True)
logger = Logger(netG, netD, args.outf)
for i in range(args.niter):
# --- train D
for _ in range(args.niterD):
optimizerD.zero_grad()
data = next(dataloader)
x_real = torch.tensor(data).to(device)
x_fake = netG(z.normal_(0,1)).detach()
x_real.requires_grad_() # to compute gradD_real
x_fake.requires_grad_() # to compute gradD_fake
y_real = netD(x_real)
y_fake = netD(x_fake)
lossE = y_real.mean() - y_fake.mean()
# grad() does not broadcast so we compute for the sum, effect is the same
gradD_real = torch.autograd.grad(y_real.sum(), x_real, create_graph=True)[0]
gradD_fake = torch.autograd.grad(y_fake.sum(), x_fake, create_graph=True)[0]
omega = 0.5*(gradD_real.view(gradD_real.size(0), -1).pow(2).sum(dim=1).mean() +
gradD_fake.view(gradD_fake.size(0), -1).pow(2).sum(dim=1).mean())
loss = -lossE - alpha*(1.0 - omega) + 0.5*args.rho*(1.0 - omega).pow(2)
loss.backward()
optimizerD.step()
alpha -= args.rho*(1.0 - omega.item())
# --- train G
optimizerG.zero_grad()
x_fake = netG(z.normal_(0,1))
y_fake = netD(x_fake)
loss = -y_fake.mean()
loss.backward()
optimizerG.step()
logger.dump((i+1), lossE.item(), alpha.item(), omega.item())
if (i+1) % 100 == 0:
print "[{}/{}] loss: {:.3f}, alpha: {:.3f}, omega: {:.3f}".format((i+1), args.niter, lossE.item(), alpha.item(), omega.item())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--outf', default='tmp/8gauss', help='where to save results')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--niter', type=int, default=5000)
parser.add_argument('--niterD', type=int, default=5, help='no. updates of D per update of G')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--alpha', type=float, default=0.0, help='Lagrange multiplier')
parser.add_argument('--rho', type=float, default=1e-3, help='quadratic weight penalty')
main(parser.parse_args())