forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimp3.m
53 lines (38 loc) · 1.38 KB
/
simp3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Function simp3
%
% 3D Simpson's rule over a rectangular solid. The call is
% simp3(f,corners) when f is given as an inline function, and
% simp3('f', corners) when f is given in a mfile.
% corners = [xmin, xmax, ymin, ymax, zmin, zman] defines the
% range of integration.
% User is asked to enter the number n of sudivisions in the
% x direction, the number m in the y directions, and p, the
% number in the z direction. m,n and p must be even.
function out = simp3(f, corners)
xmin = corners(1); xmax = corners(2); ymin = corners(3); ymax = corners(4);
zmin = corners(5); zmax = corners(6);
disp(' ')
disp('the number of subdivisions m,n and p in each direction must be even')
subdiv = input('enter the number of subdivisions [n m p] ')
n = subdiv(1); m = subdiv(2); p = subdiv(3);
x = linspace(xmin, xmax, n+1);
y = linspace(ymin, ymax, m+1);
z = linspace(zmin, zmax, p+1);
[X,Y,Z] = meshgrid(x,y,z);
svecx = 2*ones(1,n+1);
svecx(2:2:n) = 4*ones(1,n/2);
svecx(1) = 1; svecx(n+1) = 1;
svecy = 2*ones(1,m+1);
svecy(2:2:m) = 4*ones(1,m/2);
svecy(1) = 1; svecy(m+1) = 1;
svecz = 2*ones(1,p+1);
svecz(2:2:p) = 4*ones(1,p/2);
svecz(1) = 1; svecz(p+1) = 1;
S2 = svecy'*svecx;
S3 = zeros(m+1,n+1,p+1);
for k = 1:p+1
S3(:,:, k) = svecz(k)*S2;
end
T = S3.*feval(f,X,Y,Z);
V = (xmax - xmin)*(ymax-ymin)*(zmax - zmin);
out = sum(sum(sum(T)))*V/(27*m*n*p);