forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpareto.R
362 lines (334 loc) · 13.7 KB
/
pareto.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#### Functions for continuous power law or Pareto distributions
# Revision history at end of file
### Standard R-type functions for distributions:
# dpareto Probability density
# ppareto Probability distribution (CDF)
# qpareto Quantile function
# rpareto Random variable generation
### Functions for fitting:
# pareto.fit Fit Pareto to data
# .pareto.fit.threshold Determine scaling threshold and then fit
# --- not for direct use, call pareto.fit instead
# .pareto.fit.ml Fit Pareto to data by maximum likelihood
# --- not for direct use, call pareto.fit instead
# pareto.loglike Calculate log-likelihood under Pareto
# .pareto.fit.regression.cdf Fit Pareto data by linear regression on
# log-log CDF (disrecommended)
# --- not for direct use, call pareto.fit instead
# loglogslope Fit Pareto via regression, extract scaling
# exponent
# loglogrsq Fit Pareto via regression, extract R^2
### Functions for testing:
#
### Functions for visualization:
# plot.eucdf.loglog Log-log plot of the empirical upper cumulative
# distribution function, AKA survival function
# plot.survival.loglog Alias for plot.eucdf.loglog
### Back-stage functions, not intended for users:
# .ks.dist.for.pareto Find Kolmogorov-Smirnov distance between fitted
# and empirical distribution; called by
# .pareto.fit.threshold
# .ks.dist.fixed.pareto Find K-S distance between given Pareto and
# empirical distribution
# Probability density of Pareto distributions
# Gives NA on values below the threshold
# Input: Data vector, lower threshold, scaling exponent, "log" flag
# Output: Vector of (log) probability densities
dpareto <- function(x, threshold = 1, exponent, log=FALSE) {
# Avoid doing limited-precision arithmetic followed by logs if we want
# the log!
if (!log) {
prefactor <- (exponent-1)/threshold
f <- function(x) {prefactor*(x/threshold)^(-exponent)}
} else {
prefactor.log <- log(exponent-1) - log(threshold)
f <- function(x) {prefactor.log -exponent*(log(x) - log(threshold))}
}
d <- ifelse(x<threshold,NA,f(x))
return(d)
}
# Cumulative distribution function of the Pareto distributions
# Gives NA on values < threshold
# Input: Data vector, lower threshold, scaling exponent, usual flags
# Output: Vector of (log) probabilities
ppareto <- function(x, threshold=1, exponent, lower.tail=TRUE, log.p=FALSE) {
if ((!lower.tail) && (!log.p)) {
f <- function(x) {(x/threshold)^(1-exponent)}
}
if ((lower.tail) && (!log.p)) {
f <- function(x) { 1 - (x/threshold)^(1-exponent)}
}
if ((!lower.tail) && (log.p)) {
f <- function(x) {(1-exponent)*(log(x) - log(threshold))}
}
if ((lower.tail) && (log.p)) {
f <- function(x) {log(1 - (x/threshold)^(1-exponent))}
}
p <- ifelse(x < threshold, NA, f(x))
return(p)
}
# Quantiles of Pareto distributions
# Input: vector of probabilities, lower threshold, scaling exponent, usual flags
# Output: Vector of quantile values
qpareto <- function(p, threshold=1, exponent, lower.tail=TRUE, log.p=FALSE) {
# Quantile function for Pareto distribution
# P(x) = 1 - (x/xmin)^(1-a)
# 1-p = (x(p)/xmin)^(1-a)
# (1-p)^(1/(1-a)) = x(p)/xmin
# xmin*((1-p)^(1/(1-a))) = x(p)
# Upper quantile:
# U(x) = (x/xmin)^(1-a)
# u^(1/(1-a)) = x/xmin
# xmin * u^(1/(1-a)) = x
# log(xmin) + (1/(1-a)) log(u) = log(x)
if (log.p) {
p <- exp(p)
}
if (lower.tail) {
p <- 1-p
}
# This works, via the recycling rule
# q<-(p^(1/(1-exponent)))*threshold
q.log <- log(threshold) + (1/(1-exponent))*log(p)
q <- exp(q.log)
return(q)
}
# Generate Pareto-distributed random variates
# Input: Integer size, lower threshold, scaling exponent
# Output: Vector of real-valued random variates
rpareto <- function(n, threshold=1, exponent) {
# Using the transformation method, because we know the quantile function
# analytically
# Consider replacing with a non-R implementation of transformation method
ru <- runif(n)
r<-qpareto(ru,threshold,exponent)
return(r)
}
# Estimate parameters of Pareto distribution
# A wrapper for functions implementing actual methods
# Input: data vector, lower threshold (or "find", indicating it should be found
# from the data), method (likelihood or regression, defaulting to former)
# Output: List indicating type of distribution ("pareto"), parameters,
# information about fit (depending on method), OR a warning and NA
# if method is not recognized
pareto.fit <- function(data, threshold, method="ml") {
if (threshold == "find") {
return(.pareto.fit.threshold(data,method=method))
}
switch(method,
ml = { return(.pareto.fit.ml(data,threshold)) },
regression.cdf = { return(.pareto.fit.regression.cdf(data,threshold)) },
{ cat("Unknown method\n"); return(NA)}
)
}
# Estimate lower threshold of Pareto distribution
# Use the method in Clauset, Shalizi and Newman (2007): consider each distinct
# data value as a possible threshold, fit using that threshold, and then find
# the Kolmogorov-Smirnov distance between estimated and empirical distributions.
# Pick the threshold which minimizes this distance. Then function then returns
# the output of one of the fixed-threshold estimators.
# Input: data vector, method (defaulting to ML)
# Output: List indicating type of distribution ("pareto"), parameters,
# information about fit (depending on method)
.pareto.fit.threshold <- function(data, method="ml") {
possibles <- unique(data)
ks.distances <- sapply(possibles,.ks.dist.for.pareto,data=data,method=method)
min.index = which.min(ks.distances)
min = possibles[min.index]
return(pareto.fit(data,threshold=min,method=method))
}
# Calculate the KS discrepancy between a data set and its fit Pareto
# distribution, assuming a given threshold. Not intended for users but rather
# for the .pareto.fit.threshold function.
# N.B., this KS statistic CANNOT be plugged in to the usual tables to find valid
# p-values, as the exponent has been estimated from the data.
# Input: real threshold, data vector, method flag
# Output: real-valued KS statistic
.ks.dist.for.pareto <- function(threshold,data,method="ml") {
model <- pareto.fit(data,threshold=threshold,method=method)
return(model$ks.dist)
}
# Calculate KS distanced between a data set and given Pareto distribution
# Not intended for users
# Input: real threshold, real exponent, data vector
# Output: real-valued KS statistic
.ks.dist.fixed.pareto <- function(data,threshold,exponent) {
data <- data[data>=threshold]
d <- suppressWarnings(ks.test(data,ppareto,threshold=threshold,exponent=exponent))
# ks.test complains about p-values when there are ties, we don't care
return(as.vector(d$statistic))
}
# Estimate scaling exponent of Pareto distribution by maximum likelihood
# Input: Data vector, lower threshold
# Output: List giving distribution type ("pareto"), parameters, log-likelihood
.pareto.fit.ml <- function (data, threshold) {
data <- data[data>=threshold]
n <- length(data)
x <- data/threshold
alpha <- 1 + n/sum(log(x))
loglike = pareto.loglike(data,threshold,alpha)
ks.dist <- .ks.dist.fixed.pareto(data,threshold=threshold,exponent=alpha)
fit <- list(type="pareto", exponent=alpha, xmin=threshold, loglike = loglike,
ks.dist = ks.dist, samples.over.threshold=n)
return(fit)
}
# Calculate log-likelihood under a Pareto distribution
# Input: Data vector, lower threshold, scaling exponent
# Output: Real-valued log-likelihood
pareto.loglike <- function(x, threshold, exponent) {
L <- sum(dpareto(x, threshold = threshold, exponent = exponent, log = TRUE))
return(L)
}
# Log-log plot of the survival function (empirical upper CDF) of a data set
# Input: Data vector, lower limit, upper limit, graphics parameters
# Output: None (returns NULL invisibly)
plot.survival.loglog <- function(x,from=min(x),to=max(x),...) {
plot.eucdf.loglog(x,from,to,...)
}
plot.eucdf.loglog <- function(x,from=min(x),to=max(x),type="l",...) {
# Use the "eucdf" function (below)
x <- sort(x)
x.eucdf <- eucdf(x)
# This is nice if the number of points is small...
plot(x,x.eucdf(x),xlim=c(from,to),log="xy",type=type,...)
# Should check how many points and switch over to a curve-type plot when
# it gets too big
invisible(NULL)
}
# Calculate the upper empirical cumulative distribution function of a
# one-dimensional data vector
# Uses the standard function ecdf
# Should, but does not yet, also produce a function of class "stepfun"
# (like ecdf)
# Input: data vector
# Output: a function
eucdf <- function(x) {
# Exploit built-in R function to get ordinary (lower) ECDF, Pr(X<=x)
x.ecdf <- ecdf(x)
# Now we want Pr(X>=x) = (1-Pr(X<=x)) + Pr(X==x)
# If x is one of the "knots" of the step function, i.e., a point with
# positive probability mass, should add that in to get Pr(X>=x)
# rather than Pr(X>x)
away.from.knot <- function(y) { 1 - x.ecdf(y) }
at.knot.prob.jump <- function(y) {
x.knots = knots(x.ecdf)
# Either get the knot number, or give zero if this was called
# away from a knot
k <- match(y,x.knots,nomatch=0)
if ((k==0) || (k==1)) { # Handle special cases
if (k==0) {
prob.jump = 0 # Not really a knot
} else {
prob.jump = x.ecdf(y) # Special handling of first knot
}
} else {
prob.jump = x.ecdf(y) - x.ecdf(x.knots[(k-1)]) # General case
}
return(prob.jump)
}
# Use one function or the other
x.eucdf <- function(y) {
baseline = away.from.knot(y)
jumps = sapply(y,at.knot.prob.jump)
ifelse (y %in% knots(x.ecdf), baseline+jumps, baseline)
}
return(x.eucdf)
}
# Calculate valid p-value for the goodness of fit of a power-law
# tail to a data set, via simulation
# Input: data vector (x), number of replications (m)
# Output: p-value
pareto.tail.ks.test <- function(x,m) {
x.pt <- pareto.fit(x,threshold="find")
x0 <- x.pt$xmin # extract parameters of fitted dist.
alpha <- x.pt$exponent
ntail <- sum(x>=x0) # How many samples in the tail?
n <- length(x)
ptail <- ntail/n # Total prob. of the tail
# Carve out the non-tail data points
body <- x[x < x0]
# Observed value of KS distance:
d.ks <- x.pt$ks.dist
# KS statistics of resamples:
r.ks <- replicate(m,.ks.resimulate.pareto.tail(n,ptail,x0,alpha,body))
p.value <- sum(r.ks >= d.ks)/m
return(p.value)
}
# Resimulate from a data set with a Pareto tail, estimate on
# the simulation and report the KS distance
# Inputs: Size of sample (n), probability of being in the tail (tail.p),
# threshold for tail (threshold), power law exponent (exponent),
# vector giving values in body (data.body)
# Output: KS distance
.ks.resimulate.pareto.tail <- function(n,tail.p,threshold,exponent,data.body) {
# Samples come from the tail with probability ptail, or else from the body
# decide randomly how many samples come from the tail
tail.samples <- rbinom(1,n,tail.p)
# Draw the samples from the tail
rtail <- rpareto(tail.samples,threshold,exponent)
# Draw the samples from the body (with replacement!)
rbody <- sample(data.body,n-tail.samples,replace=TRUE)
b <- c(rtail,rbody)
b.ks <- pareto.fit(b,threshold="find")$ks.dist
return(b.ks)
}
### The crappy linear regression way to fit a power law
# The common procedure is to fit to the binned density function, which is even
# crappier than to fit to the complementary distribution function; this
# currently only implements the latter
# First, produce the empirical complementary distribution function, as
# a pair of lists, {x}, {C(x)}
# Then regress log(C) ~ log(x)
# and report the slope and the R^2
# Input: Data vector, threshold
# Output: List with distributional parameters and information about the
# fit
.pareto.fit.regression.cdf <- function(x,threshold=1) {
# Discard data under threshold
x <- x[x>=threshold]
n <- length(x)
# We need the different observed values of x, in order
distinct_x <- sort(unique(x))
x.eucdf <- eucdf(x)
upper_probs <- x.eucdf(distinct_x)
loglogfit <- lm(log(upper_probs) ~ log(distinct_x))
intercept <- as.vector(coef(loglogfit)[1]) # primarily useful for plotting
slope <- as.vector(-coef(loglogfit)[2]) # Remember sign of parameterization
# But that's the exponent of the CDF, that of the pdf is one larger
# and is what we're parameterizing by
slope <- slope+1
r2 <- summary(loglogfit)$r.squared
loglike <- pareto.loglike(x, threshold, slope)
ks.dist <- .ks.dist.fixed.pareto(x,threshold=threshold,exponent=slope)
result <- list(type="pareto", exponent = slope, rsquare = r2,
log_x = log(distinct_x), log_p = log(upper_probs),
intercept = intercept, loglike = loglike, xmin=threshold,
ks.dist = ks.dist, samples.over.threshold=n)
return(result)
}
# Wrapper function to just get the exponent estimate
loglogslope <- function(x,threshold=1) {
llf <- .pareto.fit.regression.cdf(x,threshold)
exponent <- llf$exponent
return(exponent)
}
# Wrapper function to just get the R^2 values
loglogrsq <- function(x,threshold=1) {
llf <- .pareto.fit.regression.cdf(x,threshold)
r2 <- llf$rsquare
return(r2)
}
# Revision history:
# no release 2003 First draft
# v 0.0 2007-06-04 First release
# v 0.0.1 2007-06-29 Fixed "not" for "knot" typo, thanks to
# Nicholas A. Povak for bug report
# v 0.0.2 2007-07-22 Fixed bugs in plot.survival.loglog, thanks to
# Stefan Wehrli for report
# v 0.0.3 2008-03-02 Realized R has a "unique" function; added
# estimating xmin via method in minimal KS dist.
# v 0.0.4 2008-04-24 Made names of non-end-user functions start
# with period, hiding them in workspace
# v 0.0.5 2011-02-03 Suppressed the warning ks.test produces about
# not being able to calculate p-values in the
# presence of ties