forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignmentProblem.java
208 lines (177 loc) · 6.41 KB
/
AssignmentProblem.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*************************************************************************
* Compilation: javac AssignmentProblem.java
* Execution: java AssignmentProblem N
* Dependencies: DijkstraSP.java DirectedEdge.java
*
* Solve an N-by-N assignment problem in N^3 log N time using the
* successive shortest path algorithm.
*
* Remark: could use dense version of Dijsktra's algorithm for
* improved theoretical efficiency of N^3, but it doesn't seem to
* help in practice.
*
* Assumes N-by-N cost matrix is nonnegative.
*
*
*********************************************************************/
public class AssignmentProblem {
private static final int UNMATCHED = -1;
private int N; // number of rows and columns
private double[][] weight; // the N-by-N cost matrix
private double[] px; // px[i] = dual variable for row i
private double[] py; // py[j] = dual variable for col j
private int[] xy; // xy[i] = j means i-j is a match
private int[] yx; // yx[j] = i means i-j is a match
public AssignmentProblem(double[][] weight) {
N = weight.length;
this.weight = new double[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
this.weight[i][j] = weight[i][j];
// dual variables
px = new double[N];
py = new double[N];
// initial matching is empty
xy = new int[N];
yx = new int[N];
for (int i = 0; i < N; i++) xy[i] = UNMATCHED;
for (int j = 0; j < N; j++) yx[j] = UNMATCHED;
// add N edges to matching
for (int k = 0; k < N; k++) {
assert isDualFeasible();
assert isComplementarySlack();
augment();
}
assert check();
}
// find shortest augmenting path and upate
private void augment() {
// build residual graph
EdgeWeightedDigraph G = new EdgeWeightedDigraph(2*N+2);
int s = 2*N, t = 2*N+1;
for (int i = 0; i < N; i++) {
if (xy[i] == UNMATCHED) G.addEdge(new DirectedEdge(s, i, 0.0));
}
for (int j = 0; j < N; j++) {
if (yx[j] == UNMATCHED) G.addEdge(new DirectedEdge(N+j, t, py[j]));
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (xy[i] == j) G.addEdge(new DirectedEdge(N+j, i, 0.0));
else G.addEdge(new DirectedEdge(i, N+j, reduced(i, j)));
}
}
// compute shortest path from s to every other vertex
DijkstraSP spt = new DijkstraSP(G, s);
// augment along alternating path
for (DirectedEdge e : spt.pathTo(t)) {
int i = e.from(), j = e.to() - N;
if (i < N) {
xy[i] = j;
yx[j] = i;
}
}
// update dual variables
for (int i = 0; i < N; i++) px[i] += spt.distTo(i);
for (int j = 0; j < N; j++) py[j] += spt.distTo(N+j);
}
// reduced cost of i-j
private double reduced(int i, int j) {
return weight[i][j] + px[i] - py[j];
}
// dual variable for row i
public double dualRow(int i) {
return px[i];
}
// dual variable for column j
public double dualCol(int j) {
return py[j];
}
// total weight of min weight perfect matching
public double weight() {
double total = 0.0;
for (int i = 0; i < N; i++) {
if (xy[i] != UNMATCHED)
total += weight[i][xy[i]];
}
return total;
}
public int sol(int i) {
return xy[i];
}
// check that dual variables are feasible
private boolean isDualFeasible() {
// check that all edges have >= 0 reduced cost
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (reduced(i, j) < 0) {
StdOut.println("Dual variables are not feasible");
return false;
}
}
}
return true;
}
// check that primal and dual variables are complementary slack
private boolean isComplementarySlack() {
// check that all matched edges have 0-reduced cost
for (int i = 0; i < N; i++) {
if ((xy[i] != UNMATCHED) && (reduced(i, xy[i]) != 0)) {
StdOut.println("Primal and dual variables are not complementary slack");
return false;
}
}
return true;
}
// check that primal variables are a perfect matching
private boolean isPerfectMatching() {
// check that xy[] is a perfect matching
boolean[] perm = new boolean[N];
for (int i = 0; i < N; i++) {
if (perm[xy[i]]) {
StdOut.println("Not a perfect matching");
return false;
}
perm[xy[i]] = true;
}
// check that xy[] and yx[] are inverses
for (int j = 0; j < N; j++) {
if (xy[yx[j]] != j) {
StdOut.println("xy[] and yx[] are not inverses");
return false;
}
}
for (int i = 0; i < N; i++) {
if (yx[xy[i]] != i) {
StdOut.println("xy[] and yx[] are not inverses");
return false;
}
}
return true;
}
// check optimality conditions
private boolean check() {
return isPerfectMatching() && isDualFeasible() && isComplementarySlack();
}
public static void main(String[] args) {
In in = new In(args[0]);
int N = in.readInt();
double[][] weight = new double[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
weight[i][j] = in.readDouble();
}
}
AssignmentProblem assignment = new AssignmentProblem(weight);
StdOut.println("weight = " + assignment.weight());
for (int i = 0; i < N; i++)
StdOut.println(i + "-" + assignment.sol(i) + "' " + weight[i][assignment.sol(i)]);
for (int i = 0; i < N; i++)
StdOut.println("px[" + i + "] = " + assignment.dualRow(i));
for (int j = 0; j < N; j++)
StdOut.println("py[" + j + "] = " + assignment.dualCol(j));
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
StdOut.println("reduced[" + i + "-" + j + "] = " + assignment.reduced(i, j));
}
}