forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch11q5.m
127 lines (105 loc) · 3.27 KB
/
ch11q5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
%Matlab code for Question 5 of Chapter 11
%This program calculates posterior means and standard deviations
%for regressions coefficients using both analytical methods and
%Monte Carlo integration
%Note that I am drawing from the t-distribution for beta
%the function tdis_rnd.m does this, which I got
%from James LeSage's Econometrics Toolbox (www.spatial-econometrics.com/)
%Load in the data you generated in part a) -- the program to do this is ch11q3a.m
load ch2q2.out;
n=size(ch2q2,1);
y=ch2q2(:,1);
x=ch2q2(:,2:3);
k=size(x,2);
%Ordinary least squares quantities
bols = inv(x'*x)*x'*y;
s2 = (y-x*bols)'*(y-x*bols)/(n-k);
v=n-k;
%Begin by doing the prior sensitivity analysis analytically
%Focus is on slope coefficient, beta(2), so only keep results relating to that
%specify the range of values for c and d, the hyperparameters varied in sensitivity analysis
cgrid=[0; 1; 2];
ncgrid=size(cgrid,1);
dgrid =[.01; 1; 100];
ndgrid=size(dgrid,1);
%loop over all values of c and d
b2keep=[];
cdkeep=[];
for icgrid=1:ncgrid
c=cgrid(icgrid,1);
for idgrid=1:ndgrid
d=dgrid(idgrid,1);
%Hyperparameters for natural conjugate prior
v0=1;
s2inv0=1;
s02=1/s2inv0;
b0=zeros(k,1);
b0(k,1)=c;
capv0=eye(k);
capv0(2,2)=d;
capv0inv=inv(capv0);
%Posterior hyperparameters for Normal-Gamma
xsquare=x'*x;
v1=v0+n;
capv1inv = capv0inv+ xsquare;
capv1=inv(capv1inv);
b1 = capv1*(capv0inv*b0 + xsquare*bols);
v1s12 = v0*s02 + v*s2 + (bols-b0)'*inv(capv0 + inv(xsquare))*(bols-b0);
s12 = v1s12/v1;
bcov = capv1*v1s12/(v1-k);
bsd=zeros(k,1);
for i = 1:k
bsd(i,1)=sqrt(bcov(i,i));
end
b2keep=[b2keep; [b1(2,1) bsd(2,1)]];
cdkeep=[cdkeep; [c d]];
end
end
vscale = s12*capv1;
vchol=chol(vscale);
vchol=vchol';
%reset the prior hyperparameter to Base Prior values
b0(k,1)=1;
capv0(2,2)=1;
capv1inv = capv0inv+ xsquare;
capv1=inv(capv1inv);
b1 = capv1*(capv0inv*b0 + xsquare*bols);
v1s12 = v0*s02 + v*s2 + (bols-b0)'*inv(capv0 + inv(xsquare))*(bols-b0);
s12 = v1s12/v1;
slopemeans=zeros(ncgrid*ndgrid,1);
slope2mos=zeros(ncgrid*ndgrid,1);
wsums=zeros(ncgrid*ndgrid,1);
%Specify the number of replications
r=100;
%tdis_rnd takes random draws from the multivariate t
%with mean zero and scale, V=I
%Hence we have to transform draws to get t(b1,bscale,v1)
for i = 1:r
%draw a t(0,1,v1) then transform to yield draw of beta
bdraw=b1 + vchol*tdis_rnd(k,v1);
b2mean=b2mean+bdraw;
b2square=b2square+bdraw.^2;
slopedraw=bdraw(2,1);
%loop over grid of c and d values in prior sensitivity analysis
icd=0;
for icgrid=1:ncgrid
c=cgrid(icgrid,1);
for idgrid=1:ndgrid
d=dgrid(idgrid,1);
%Importance sampling weight
w=tdens(slopedraw,c,d,v1)/tdens(slopedraw,b0(2,1),capv0(2,2),v1);
icd=icd+1;
slopemeans(icd,1)=slopemeans(icd,1) + w*slopedraw;
slope2mos(icd,1)=slope2mos(icd,1) + w*slopedraw^2;
wsums(icd,1)=wsums(icd,1) + w;
end
end
end
'Prior sensitivity results for beta(2)'
'c and d then Posterior mean and standard deviation -- analytical'
[cdkeep b2keep]
slopemeans=slopemeans./wsums;
slope2mos=slope2mos./wsums;
slopesds=sqrt(slope2mos - slopemeans.^2);
'c and d then Posterior mean and standard deviation -- importance sampling'
[cdkeep slopemeans slopesds]