forked from harvardnlp/seq2seq-attn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.lua
61 lines (53 loc) · 1.65 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
--LinearNoBias from elements library
local LinearNoBias, Linear = torch.class('nn.LinearNoBias', 'nn.Linear')
function LinearNoBias:__init(inputSize, outputSize)
nn.Module.__init(self)
self.weight = torch.Tensor(outputSize, inputSize)
self.gradWeight = torch.Tensor(outputSize, inputSize)
self:reset()
end
function LinearNoBias:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1./math.sqrt(self.weight:size(2))
end
if nn.oldSeed then
for i=1,self.weight:size(1) do
self.weight:select(1, i):apply(function()
return torch.uniform(-stdv, stdv)
end)
end
else
self.weight:uniform(-stdv, stdv)
end
return self
end
function LinearNoBias:updateOutput(input)
if input:dim() == 1 then
self.output:resize(self.weight:size(1))
self.output:mv(self.weight, input)
elseif input:dim() == 2 then
local nframe = input:size(1)
local nElement = self.output:nElement()
self.output:resize(nframe, self.weight:size(1))
if self.output:nElement() ~= nElement then
self.output:zero()
end
if not self.addBuffer or self.addBuffer:nElement() ~= nframe then
self.addBuffer = input.new(nframe):fill(1)
end
self.output:addmm(0, self.output, 1, input, self.weight:t())
else
error('input must be vector or matrix')
end
return self.output
end
function LinearNoBias:accGradParameters(input, gradOutput, scale)
scale = scale or 1
if input:dim() == 1 then
self.gradWeight:addr(scale, gradOutput, input)
elseif input:dim() == 2 then
self.gradWeight:addmm(scale, gradOutput:t(), input)
end
end