-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline.py
307 lines (246 loc) · 11.3 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import math
import json
import logging
import argparse
import warnings
import numpy as np
import pandas as pd
import xgboost as xgb
from tqdm import tqdm
from collections import OrderedDict
from numpy.random import default_rng
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score, roc_auc_score
from pyteap.signals.gsr import acquire_gsr, get_gsr_features
from pyteap.signals.ecg import get_ecg_features
from utils.logging import init_logger
def load_dataset(paths):
# load esm data
esms = pd.read_csv(filepath_or_buffer=paths['esms'], header=0)
# for each user
uid_to_segments = {}
for uid in os.listdir(paths['root']):
uid_to_segments.setdefault(int(uid), [])
segs_dir = os.path.join(paths['root'], uid)
# for each segment file in segs_dir
for fname in os.listdir(segs_dir):
# get index and labels
idx = int(fname.split('.')[0])
esm = esms.loc[idx]
labels = (esm.arousal, esm.valence)
# load segment saved as json file and save to dict
with open(os.path.join(segs_dir, fname)) as f:
seg = json.load(f)
uid_to_segments[int(uid)].append((idx, seg, labels))
# return dict ordered by uid
return OrderedDict(sorted(uid_to_segments.items(), key=lambda x: x[0]))
def prepare_dataset(paths):
# load segments
uid_to_segments = load_dataset(paths)
# prepare features and labels
X, y = {}, {}
def rmssd(rri):
rri = rri[~np.isnan(rri)]
diff = [(rri[i] - rri[i+1]) ** 2 for i in range(len(rri) - 1)]
return math.sqrt(sum(diff) / len(diff))
# for each user
for uid, segs in uid_to_segments.items():
# sort segments by index
segs = sorted(segs, key=lambda x: x[0])
curr_X, curr_y = [], []
# with each segment
for (_, seg, labels) in tqdm(segs, desc=f'User {uid}', ascii=True, dynamic_ncols=True):
# get features
features = []
for sigtype in ['gsr', 'bpm', 'rri', 'temp']:
sig = seg[sigtype]
if sigtype == 'gsr':
# divide by 1e3 as raw gsr is in kOhms for msband 2
features.extend(get_gsr_features(acquire_gsr(np.array(sig) / 1e3, 5), 5))
elif sigtype == 'bpm':
features.extend(get_ecg_features(sig))
elif sigtype == 'rri':
features.extend([np.mean(sig), np.std(sig, ddof=1), rmssd(np.array(sig))])
elif sigtype == 'temp':
features.extend([np.mean(sig), np.std(sig, ddof=1)])
# skip if one or more feature is NaN
if np.isnan(features).any():
logging.getLogger('default').warning('One or more feature is NaN, skipped.')
continue
curr_X.append(features)
curr_y.append([labels[0] >= 0, labels[1] >= 0])
X[uid] = StandardScaler().fit_transform(np.stack(curr_X))
y[uid] = np.stack(curr_y)
return X, y
def get_results(y_test, preds, probs):
return {
'acc.': accuracy_score(y_test, preds),
'bacc.': balanced_accuracy_score(y_test, preds, adjusted=False),
'f1': f1_score(y_test, preds),
'auroc': roc_auc_score(y_test, probs),
}
def pred_majority(majority, y_test):
preds = np.repeat(majority, y_test.size)
probs = np.repeat(majority, y_test.size)
return get_results(y_test, preds, probs)
def pred_random(y_classes, y_test, rng, ratios=None):
preds = rng.choice(y_classes, y_test.size, replace=True, p=ratios)
if ratios is not None:
probs = np.where(preds == 1, ratios[1], ratios[0])
else:
probs = np.repeat(0.5, y_test.size)
return get_results(y_test, preds, probs)
def pred_gnb(X_train, y_train, X_test, y_test):
clf = GaussianNB().fit(X_train, y_train)
preds = clf.predict(X_test)
probs = clf.predict_proba(X_test)[:, 1]
return get_results(y_test, preds, probs)
def pred_xgb(X_train, y_train, X_test, y_test, seed, gpu):
# load data into DMatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
# set parameters
params = {
'booster': 'gbtree',
'verbosity': 1,
'max_depth': 6,
'eta': 0.3,
'objective': 'binary:logistic',
# 'num_class': 2,
'eval_metric': 'auc',
'seed': seed,
}
# for gpu support
if gpu:
params['gpu_id'] = 0
params['tree_method'] = 'gpu_hist'
# train model and predict
num_round = 100
bst = xgb.train(params, dtrain, num_round)
probs = bst.predict(dtest)
preds = probs > 0.5
# return results
return get_results(y_test, preds, probs)
def get_baseline_kfold(X, y, seed, target, n_splits, shuffle, gpu):
# initialize random number generator and fold generator
rng = default_rng(seed)
skf = StratifiedKFold(n_splits=n_splits, shuffle=shuffle, random_state=seed)
# aggregated features and labels
X = np.concatenate(list(X.values()))
y = np.concatenate(list(y.values()))
logging.getLogger('default').info(f'Dataset size: {X.shape}')
# get labels corresponding to target class
if target == 'arousal':
y = y[:, 0]
elif target == 'valence':
y = y[:, 1]
results = {}
# for each fold, split train & test and get classification results
for i, (train_idx, test_idx) in enumerate(skf.split(X, y)):
X_train, X_test = X[train_idx], X[test_idx]
y_train, y_test = y[train_idx], y[test_idx]
y_classes, y_counts = np.unique(y_train, return_counts=True)
majority = y_classes[np.argmax(y_counts)]
class_ratios = y_counts / y_train.size
results[i+1] = {
'Random': pred_random(y_classes, y_test, rng),
'Majority': pred_majority(majority, y_test),
'Class ratio': pred_random(y_classes, y_test, rng, ratios=class_ratios),
'Gaussian NB': pred_gnb(X_train, y_train, X_test, y_test),
'XGBoost': pred_xgb(X_train, y_train, X_test, y_test, seed, gpu),
}
# return results as table
results = {(fold, classifier): values for (fold, _results) in results.items() for (classifier, values) in _results.items()}
results_table = pd.DataFrame.from_dict(results, orient='index').stack().unstack(level=1).rename_axis(['Fold', 'Metric'])
return results_table[['Random', 'Majority', 'Class ratio', 'Gaussian NB', 'XGBoost']]
def get_baseline_loso(X, y, seed, target, n_splits, shuffle, gpu):
# initialize random number generator
rng = default_rng(seed)
results = {}
# for each participant split train & test
for uid in X.keys():
X_train, X_test = np.concatenate([v for k, v in X.items() if k != uid]), X[uid]
y_train, y_test = np.concatenate([v for k, v in y.items() if k != uid]), y[uid]
# get labels corresponding to target class
if target == 'arousal':
y_train, y_test = y_train[:, 0], y_test[:, 0]
elif target == 'valence':
y_train, y_test = y_train[:, 1], y_test[:, 1]
# get majority label and class ratios
y_classes, y_counts = np.unique(y_train, return_counts=True)
majority = y_classes[np.argmax(y_counts)]
class_ratios = y_counts / y_train.size
# get classification results
results[uid] = {
'Random': pred_random(y_classes, y_test, rng),
'Majority': pred_majority(majority, y_test),
'Class ratio': pred_random(y_classes, y_test, rng, ratios=class_ratios),
'Gaussian NB': pred_gnb(X_train, y_train, X_test, y_test),
'XGBoost': pred_xgb(X_train, y_train, X_test, y_test, seed, gpu),
}
results = {(uid, classifier): value for (uid, _results) in results.items() for (classifier, value) in _results.items()}
results_table = pd.DataFrame.from_dict(results, orient='index').stack().unstack(level=1)
return results_table[['Random', 'Majority', 'Class ratio', 'Gaussian NB', 'XGBoost']]
def get_baseline(X, y, configs):
seed = configs['seed']
target = configs['target']
cv = configs['cv']
n_splits = configs['splits']
shuffle = configs['shuffle']
gpu = configs['gpu']
if cv == 'kfold':
results = get_baseline_kfold(X, y, seed, target, n_splits, shuffle, gpu)
elif cv == 'loso':
results = get_baseline_loso(X, y, seed, target, n_splits, shuffle, gpu)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--root', type=str, required=True)
parser.add_argument('-e', '--esms', type=str, required=True)
parser.add_argument('-tz', '--timezone', type=str, default='UTC', help='a pytz timezone string for logger, default is UTC')
parser.add_argument('-s', '--seed', type=int, default=0, help='seed for random number generation')
parser.add_argument('-t', '--target', type=str, default='valence', help='target label for classification, must be either "valence" or "arousal"')
parser.add_argument('--cv', type=str, default='kfold', help='type of cross-validation to perform, must be either "kfold" or "loso" (leave-one-subject-out)')
parser.add_argument('--splits', type=int, default=5, help='number of folds for k-fold stratified classification')
parser.add_argument('--shuffle', default=False, action='store_true', help='shuffle data before splitting to folds, default is no shuffle')
parser.add_argument('--gpu', default=False, action='store_true', help='if True, use available GPU for XGBoost, default is False')
args = parser.parse_args()
# initialize default logger and path variables
logger = init_logger(tz=args.timezone)
PATHS = {
'root': os.path.expanduser(args.root),
'esms': os.path.expanduser(args.esms)
}
# filter these RuntimeWarning messages
warnings.filterwarnings('ignore')
# warnings.filterwarnings(action='ignore', message='Mean of empty slice')
# warnings.filterwarnings(action='ignore', message='invalid value encountered in double_scalars')
# warnings.filterwarnings(action='ignore', message='divide by zero encountered in true_divide')
# warnings.filterwarnings(action='ignore', message='invalid value encountered in subtract')
# check commandline arguments
assert args.target in ['valence', 'arousal'], f'--target must be either "valence" or "arousal", but given {args.target}'
assert args.cv in ['kfold', 'loso'], f'--cv must be either "kfold" or "loso", but given {args.cv}'
assert args.splits > 1, f'--splits must be greater than 1, but given {args.splits}'
logger.info('Preprocessing data with...')
logger.info(f"Dataset: {PATHS['root']}")
logger.info(f"ESM: {PATHS['esms']}")
X, y = prepare_dataset(PATHS)
logger.info('Preprocessing complete.')
CONFIGS = {
'seed': args.seed,
'target': args.target,
'cv': args.cv,
'splits': args.splits,
'shuffle': args.shuffle,
'gpu': args.gpu,
}
logger.info(f'Config: {CONFIGS}')
results = get_baseline(X, y, CONFIGS)
# print summary of classification results
if args.cv == 'kfold':
print(results.groupby(level='Metric').mean().to_markdown())
else:
print(results)