-
Notifications
You must be signed in to change notification settings - Fork 354
/
Copy pathdeepq_mineral_4way.py
531 lines (444 loc) · 17 KB
/
deepq_mineral_4way.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import numpy as np
import os
import dill
import tempfile
import tensorflow as tf
import zipfile
from absl import flags
import baselines.common.tf_util as U
from baselines import logger
from baselines.common.schedules import LinearSchedule
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
from pysc2.lib import actions as sc2_actions
from pysc2.env import environment
from pysc2.lib import features
from pysc2.lib import actions
_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index
_PLAYER_FRIENDLY = 1
_PLAYER_NEUTRAL = 3 # beacon/minerals
_PLAYER_HOSTILE = 4
_NO_OP = actions.FUNCTIONS.no_op.id
_MOVE_SCREEN = actions.FUNCTIONS.Move_screen.id
_ATTACK_SCREEN = actions.FUNCTIONS.Attack_screen.id
_SELECT_ARMY = actions.FUNCTIONS.select_army.id
_NOT_QUEUED = [0]
_SELECT_ALL = [0]
FLAGS = flags.FLAGS
class ActWrapper(object):
def __init__(self, act):
self._act = act
#self._act_params = act_params
@staticmethod
def load(path, act_params, num_cpu=16):
with open(path, "rb") as f:
model_data = dill.load(f)
act = deepq.build_act(**act_params)
sess = U.make_session(num_cpu=num_cpu)
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
U.load_state(os.path.join(td, "model"))
return ActWrapper(act)
def __call__(self, *args, **kwargs):
return self._act(*args, **kwargs)
def save(self, path):
"""Save model to a pickle located at `path`"""
with tempfile.TemporaryDirectory() as td:
U.save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path,
os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
dill.dump((model_data), f)
def load(path, act_params, num_cpu=16):
"""Load act function that was returned by learn function.
Parameters
----------
path: str
path to the act function pickle
num_cpu: int
number of cpus to use for executing the policy
Returns
-------
act: ActWrapper
function that takes a batch of observations
and returns actions.
"""
return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
def learn(env,
q_func,
num_actions=4,
lr=5e-4,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
train_freq=1,
batch_size=32,
print_freq=1,
checkpoint_freq=10000,
learning_starts=1000,
gamma=1.0,
target_network_update_freq=500,
prioritized_replay=False,
prioritized_replay_alpha=0.6,
prioritized_replay_beta0=0.4,
prioritized_replay_beta_iters=None,
prioritized_replay_eps=1e-6,
num_cpu=16,
param_noise=False,
param_noise_threshold=0.05,
callback=None):
"""Train a deepq model.
Parameters
-------
env: pysc2.env.SC2Env
environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
lr: float
learning rate for adam optimizer
max_timesteps: int
number of env steps to optimizer for
buffer_size: int
size of the replay buffer
exploration_fraction: float
fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
final value of random action probability
train_freq: int
update the model every `train_freq` steps.
set to None to disable printing
batch_size: int
size of a batched sampled from replay buffer for training
print_freq: int
how often to print out training progress
set to None to disable printing
checkpoint_freq: int
how often to save the model. This is so that the best version is restored
at the end of the training. If you do not wish to restore the best version at
the end of the training set this variable to None.
learning_starts: int
how many steps of the model to collect transitions for before learning starts
gamma: float
discount factor
target_network_update_freq: int
update the target network every `target_network_update_freq` steps.
prioritized_replay: True
if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
number of iterations over which beta will be annealed from initial value
to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
epsilon to add to the TD errors when updating priorities.
num_cpu: int
number of cpus to use for training
callback: (locals, globals) -> None
function called at every steps with state of the algorithm.
If callback returns true training stops.
Returns
-------
act: ActWrapper
Wrapper over act function. Adds ability to save it and load it.
See header of baselines/deepq/categorical.py for details on the act function.
"""
# Create all the functions necessary to train the model
sess = U.make_session(num_cpu=num_cpu)
sess.__enter__()
def make_obs_ph(name):
return U.BatchInput((32, 32), name=name)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=make_obs_ph,
q_func=q_func,
num_actions=num_actions,
optimizer=tf.train.AdamOptimizer(learning_rate=lr),
gamma=gamma,
grad_norm_clipping=10,
scope="deepq")
#
# act_y, train_y, update_target_y, debug_y = deepq.build_train(
# make_obs_ph=make_obs_ph,
# q_func=q_func,
# num_actions=num_actions,
# optimizer=tf.train.AdamOptimizer(learning_rate=lr),
# gamma=gamma,
# grad_norm_clipping=10,
# scope="deepq_y"
# )
act_params = {
'make_obs_ph': make_obs_ph,
'q_func': q_func,
'num_actions': num_actions,
}
# Create the replay buffer
if prioritized_replay:
replay_buffer = PrioritizedReplayBuffer(
buffer_size, alpha=prioritized_replay_alpha)
# replay_buffer_y = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
if prioritized_replay_beta_iters is None:
prioritized_replay_beta_iters = max_timesteps
beta_schedule = LinearSchedule(
prioritized_replay_beta_iters,
initial_p=prioritized_replay_beta0,
final_p=1.0)
# beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
# initial_p=prioritized_replay_beta0,
# final_p=1.0)
else:
replay_buffer = ReplayBuffer(buffer_size)
# replay_buffer_y = ReplayBuffer(buffer_size)
beta_schedule = None
# beta_schedule_y = None
# Create the schedule for exploration starting from 1.
exploration = LinearSchedule(
schedule_timesteps=int(exploration_fraction * max_timesteps),
initial_p=1.0,
final_p=exploration_final_eps)
# Initialize the parameters and copy them to the target network.
U.initialize()
update_target()
# update_target_y()
episode_rewards = [0.0]
saved_mean_reward = None
obs = env.reset()
# Select all marines first
obs = env.step(
actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])
player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
screen = (player_relative == _PLAYER_NEUTRAL).astype(int) #+ path_memory
player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
player = [int(player_x.mean()), int(player_y.mean())]
if (player[0] > 16):
screen = shift(LEFT, player[0] - 16, screen)
elif (player[0] < 16):
screen = shift(RIGHT, 16 - player[0], screen)
if (player[1] > 16):
screen = shift(UP, player[1] - 16, screen)
elif (player[1] < 16):
screen = shift(DOWN, 16 - player[1], screen)
reset = True
with tempfile.TemporaryDirectory() as td:
model_saved = False
model_file = os.path.join("model/", "mineral_shards")
print(model_file)
for t in range(max_timesteps):
if callback is not None:
if callback(locals(), globals()):
break
# Take action and update exploration to the newest value
kwargs = {}
if not param_noise:
update_eps = exploration.value(t)
update_param_noise_threshold = 0.
else:
update_eps = 0.
if param_noise_threshold >= 0.:
update_param_noise_threshold = param_noise_threshold
else:
# Compute the threshold such that the KL divergence between perturbed and non-perturbed
# policy is comparable to eps-greedy exploration with eps = exploration.value(t).
# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
# for detailed explanation.
update_param_noise_threshold = -np.log(
1. - exploration.value(t) +
exploration.value(t) / float(num_actions))
kwargs['reset'] = reset
kwargs[
'update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = True
action = act(
np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
# action_y = act_y(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
reset = False
coord = [player[0], player[1]]
rew = 0
if (action == 0): #UP
if (player[1] >= 8):
coord = [player[0], player[1] - 8]
#path_memory_[player[1] - 16 : player[1], player[0]] = -1
elif (player[1] > 0):
coord = [player[0], 0]
#path_memory_[0 : player[1], player[0]] = -1
#else:
# rew -= 1
elif (action == 1): #DOWN
if (player[1] <= 23):
coord = [player[0], player[1] + 8]
#path_memory_[player[1] : player[1] + 16, player[0]] = -1
elif (player[1] > 23):
coord = [player[0], 31]
#path_memory_[player[1] : 63, player[0]] = -1
#else:
# rew -= 1
elif (action == 2): #LEFT
if (player[0] >= 8):
coord = [player[0] - 8, player[1]]
#path_memory_[player[1], player[0] - 16 : player[0]] = -1
elif (player[0] < 8):
coord = [0, player[1]]
#path_memory_[player[1], 0 : player[0]] = -1
#else:
# rew -= 1
elif (action == 3): #RIGHT
if (player[0] <= 23):
coord = [player[0] + 8, player[1]]
#path_memory_[player[1], player[0] : player[0] + 16] = -1
elif (player[0] > 23):
coord = [31, player[1]]
#path_memory_[player[1], player[0] : 63] = -1
if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
obs = env.step(actions=[
sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
])
new_action = [
sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
]
# else:
# new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
obs = env.step(actions=new_action)
player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
new_screen = (player_relative == _PLAYER_NEUTRAL).astype(
int) #+ path_memory
player_y, player_x = (
player_relative == _PLAYER_FRIENDLY).nonzero()
player = [int(player_x.mean()), int(player_y.mean())]
if (player[0] > 16):
new_screen = shift(LEFT, player[0] - 16, new_screen)
elif (player[0] < 16):
new_screen = shift(RIGHT, 16 - player[0], new_screen)
if (player[1] > 16):
new_screen = shift(UP, player[1] - 16, new_screen)
elif (player[1] < 16):
new_screen = shift(DOWN, 16 - player[1], new_screen)
rew = obs[0].reward
done = obs[0].step_type == environment.StepType.LAST
# Store transition in the replay buffer.
replay_buffer.add(screen, action, rew, new_screen, float(done))
# replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))
screen = new_screen
episode_rewards[-1] += rew
reward = episode_rewards[-1]
if done:
obs = env.reset()
player_relative = obs[0].observation["screen"][
_PLAYER_RELATIVE]
screen = (player_relative == _PLAYER_NEUTRAL).astype(
int) #+ path_memory
player_y, player_x = (
player_relative == _PLAYER_FRIENDLY).nonzero()
player = [int(player_x.mean()), int(player_y.mean())]
# Select all marines first
env.step(actions=[
sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
])
episode_rewards.append(0.0)
#episode_minerals.append(0.0)
reset = True
if t > learning_starts and t % train_freq == 0:
# Minimize the error in Bellman's equation on a batch sampled from replay buffer.
if prioritized_replay:
experience = replay_buffer.sample(
batch_size, beta=beta_schedule.value(t))
(obses_t, actions, rewards, obses_tp1, dones, weights,
batch_idxes) = experience
# experience_y = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
# (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y, batch_idxes_y) = experience_y
else:
obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
batch_size)
weights, batch_idxes = np.ones_like(rewards), None
# obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(batch_size)
# weights_y, batch_idxes_y = np.ones_like(rewards_y), None
td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
weights)
# td_errors_y = train_x(obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y)
if prioritized_replay:
new_priorities = np.abs(td_errors) + prioritized_replay_eps
# new_priorities = np.abs(td_errors) + prioritized_replay_eps
replay_buffer.update_priorities(batch_idxes,
new_priorities)
# replay_buffer.update_priorities(batch_idxes, new_priorities)
if t > learning_starts and t % target_network_update_freq == 0:
# Update target network periodically.
update_target()
# update_target_y()
mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
num_episodes = len(episode_rewards)
if done and print_freq is not None and len(
episode_rewards) % print_freq == 0:
logger.record_tabular("steps", t)
logger.record_tabular("episodes", num_episodes)
logger.record_tabular("reward", reward)
logger.record_tabular("mean 100 episode reward",
mean_100ep_reward)
logger.record_tabular("% time spent exploring",
int(100 * exploration.value(t)))
logger.dump_tabular()
if (checkpoint_freq is not None and t > learning_starts
and num_episodes > 100 and t % checkpoint_freq == 0):
if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
if print_freq is not None:
logger.log(
"Saving model due to mean reward increase: {} -> {}".
format(saved_mean_reward, mean_100ep_reward))
U.save_state(model_file)
model_saved = True
saved_mean_reward = mean_100ep_reward
if model_saved:
if print_freq is not None:
logger.log("Restored model with mean reward: {}".format(
saved_mean_reward))
U.load_state(model_file)
return ActWrapper(act)
def intToCoordinate(num, size=64):
if size != 64:
num = num * size * size // 4096
y = num // size
x = num - size * y
return [x, y]
UP, DOWN, LEFT, RIGHT = 'up', 'down', 'left', 'right'
def shift(direction, number, matrix):
''' shift given 2D matrix in-place the given number of rows or columns
in the specified (UP, DOWN, LEFT, RIGHT) direction and return it
'''
if direction in (UP):
matrix = np.roll(matrix, -number, axis=0)
matrix[number:, :] = 0
return matrix
elif direction in (DOWN):
matrix = np.roll(matrix, number, axis=0)
matrix[:number, :] = 0
return matrix
elif direction in (LEFT):
matrix = np.roll(matrix, -number, axis=1)
matrix[:, number:] = 0
return matrix
elif direction in (RIGHT):
matrix = np.roll(matrix, number, axis=1)
matrix[:, :number] = 0
return matrix
else:
return matrix