-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils_segmentation.py
606 lines (510 loc) · 18.6 KB
/
utils_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import numpy as np
import nibabel as nib
import SimpleITK as sitk
from matplotlib import patches
import scipy.ndimage.filters as fi
from matplotlib import pyplot as plt
from dipy.align.reslice import reslice
plt.rcParams['image.cmap'] = 'gray'
# -------------------------
# Nifti Image Preprocessing
# -------------------------
def load_nib(fpath):
"""
Load nifti image
:param fpath: path of nifti file
"""
im = nib.load(fpath)
return im
def resample_nib(im, new_spacing=(1, 1, 1), order=0):
"""
Resample nifti voxel array and corresponding affine
:param im: nifti image
:param new_spacing: new voxel size
:param order: order of interpolation for resampling/reslicing, 0 nearest interpolation, 1 trilinear etc.
:return new_im: resampled nifti image
"""
header = im.header
vox_zooms = header.get_zooms()
vox_arr = im.get_fdata()
vox_affine = im.affine
# resample using DIPY.ALIGN
if isinstance(new_spacing, int) or isinstance(new_spacing, float):
new_spacing = (new_spacing[0], new_spacing[1], new_spacing[2])
new_vox_arr, new_vox_affine = reslice(vox_arr, vox_affine, vox_zooms, new_spacing, order=order)
# create resampled image
new_im = nib.Nifti1Image(new_vox_arr, new_vox_affine, header)
return new_im
def transpose_compatible(arr, direction):
"""
Transpose array to a compatible direction
:param arr: numpy array
:param direction: 'asl_to_np' or 'np_to_asl' only
:return arr: transposed array
"""
if direction == 'asl_to_np':
arr = arr.transpose([1, 0, 2])[:, :, ::-1]
if direction == 'np_to_asl':
arr = arr[:, :, ::-1].transpose([1, 0, 2])
else:
'Direction can only be ASL to Anjany\'s numpy indexing or the other way around!'
return arr
# --------------------------
# Preprocessing Segmentation
# --------------------------
def get_vert_lims(loc, off, h, w, d):
"""
Get vertebra and padding limits for segmentation training
:param loc: vertebra centroid coordinates
:param off: offset
:param h: original image height
:param w: original image width
:param d: original image depth
:return:
vert_lims: vertebra patch in original full spine image coordinates (for cropping)
vert_pads: padding to add on 3 dimensions to center the vertebrae in the patch
"""
# height
if loc[0] + off[0, 0] < 0:
h_min = 0
h_lo_pad = 0 - (loc[0] + off[0, 0])
else:
h_min = loc[0] + off[0, 0]
h_lo_pad = 0
if loc[0] + off[0, 1] > h:
h_max = h
h_hi_pad = (loc[0] + off[0, 1]) - h
else:
h_max = loc[0] + off[0, 1]
h_hi_pad = 0
# width
if loc[1] + off[1, 0] < 0:
w_min = 0
w_lo_pad = 0 - (loc[1] + off[1, 0])
else:
w_min = loc[1] + off[1, 0]
w_lo_pad = 0
if loc[1] + off[1, 1] > w:
w_max = w
w_hi_pad = (loc[1] + off[1, 1]) - w
else:
w_max = loc[1] + off[1, 1]
w_hi_pad = 0
# depth
if loc[2] + off[2, 0] < 0:
d_min = 0
d_lo_pad = 0 - (loc[2] + off[2, 0])
else:
d_min = loc[2] + off[2, 0]
d_lo_pad = 0
if loc[2] + off[2, 1] > d:
d_max = d
d_hi_pad = (loc[2] + off[2, 1]) - d
else:
d_max = loc[2] + off[2, 1]
d_hi_pad = 0
vert_lims = [h_min, h_max, w_min, w_max, d_min, d_max]
vert_pads = [h_lo_pad, h_hi_pad, w_lo_pad, w_hi_pad, d_lo_pad, d_hi_pad]
return vert_lims, vert_pads
def rescale(x, min_val, max_val):
return (max_val - min_val) * (x - np.min(x)) / float(np.max(x) - np.min(x)) + min_val
def gen_gaussian_im(shape, mean, variance):
"""
Generate a 3D Gaussian kernel array for a single vertebra centroid
:param shape: full spine image shape 1 mm
:param mean: gaussian mean
:param variance: gaussian variance
:return:
"""
# create nxn zeros
gauss = np.zeros(shape)
# set element at the middle to one, a dirac delta
gauss[mean[0], mean[1], mean[2]] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter mask
return rescale(fi.gaussian_filter(gauss, variance), 0, 1)
def get_channelwise_gaussian(centroids_list, verts_in_im, im_shape):
"""
Generate a 3D Gaussian kernel array for all vertebrae
:param centroids_list: centroid coordinates
:param verts_in_im: vertebrae to patch
:param im_shape: full spine image shape 1 mm
:return:
"""
num_verts = centroids_list.shape[0]
cent_mask = np.repeat(np.expand_dims(np.zeros(im_shape, dtype='float32'), axis=-1), num_verts, axis=-1)
for vert_idx in verts_in_im:
if vert_idx <= num_verts:
cent_loc = centroids_list[vert_idx - 1].astype(int)
gauss = gen_gaussian_im(im_shape, cent_loc, variance=2)
gauss = (gauss - np.amin(gauss)) / np.amax(gauss - np.amin(gauss))
cent_mask[:, :, :, vert_idx - 1] = gauss
return cent_mask
def get_gaussian_heatmap(im_shape, cent_loc):
"""
Generate a 3D Gaussian heatmap for a single vertebrae
:param im_shape: full spine image shape 1 mm
:param cent_loc: vertebra centroid coordinates
:return: cent_mask: heatmap mask
"""
cent_mask = np.zeros(im_shape, dtype='float32')
gauss = gen_gaussian_im(im_shape, cent_loc, variance=2)
gauss = (gauss - np.amin(gauss)) / np.amax(gauss - np.amin(gauss))
cent_mask[:, :, :] = gauss
return cent_mask
def get_seg_patch(im, loc, off):
"""
Generate a vertebra patch for segmentation training
:param im: original full spine image 1 mm
:param loc: centroid coordinates 1 mm
:param gauss_cents: gaussian heatmaps
:param vert_idx:
:param off: padding offset
:return:
"""
h, w, d = im.shape
# get patch limits and padding
lims, pads = get_vert_lims(loc, off, h, w, d)
gauss_hm = get_gaussian_heatmap(im.shape, loc)
# crop
vert_im = im[lims[0]:lims[1], lims[2]:lims[3], lims[4]:lims[5]]
vert_gauss = gauss_hm[lims[0]:lims[1], lims[2]:lims[3], lims[4]:lims[5]]
# pad
vert_im = np.pad(vert_im, pad_width=((pads[0], pads[1]), (pads[2], pads[3]), (pads[4], pads[5])), mode='constant')
vert_gauss = np.pad(vert_gauss, pad_width=((pads[0], pads[1]), (pads[2], pads[3]), (pads[4], pads[5])),
mode='constant')
return vert_im, vert_gauss, lims, pads
def crop_seg_patch(msk, pads):
"""
Crop the patch to original size
:param msk: patch mask
:param pads: pads to crop
:return:
"""
h,w,d = msk.shape
[h_lo_pad, h_hi_pad, w_lo_pad, w_hi_pad, d_lo_pad, d_hi_pad] = pads
msk_crop = msk[h_lo_pad:h-h_hi_pad, w_lo_pad:w-w_hi_pad, d_lo_pad:d-d_hi_pad]
return msk_crop
# ----------------------------
# Postprocessing Localization
# ----------------------------
def clean_hm_prediction(msk, threshold):
"""
Apply largest 3d connected component for localization
:param msk: 3d spine localization heatmap
:param threshold: intensity (probability) threshold
:return msk_corrected: post-processed mask
"""
msk[msk < threshold] = 0
msk_binary = np.copy(msk)
msk_binary[msk_binary > threshold] = 1
msk_im = sitk.GetImageFromArray(msk_binary.astype('uint8'))
msk_im.SetSpacing([5, 5, 5])
# connected component filter
connected = sitk.ConnectedComponentImageFilter()
connected.FullyConnectedOn()
cc = connected.Execute(msk_im)
# find largest component
no_of_cc = connected.GetObjectCount()
cc_sizes = np.zeros((1, no_of_cc))
cc_arr = sitk.GetArrayFromImage(cc)
for i in range(1, no_of_cc + 1):
cc_sizes[0, i - 1] = np.count_nonzero(cc_arr == i)
cc_seq = np.argsort(cc_sizes)
largest_comp = cc_seq[0, -1] + 1
# remove every other 'component' other than largest component
cc_arr[cc_arr != largest_comp] = False
cc_arr[cc_arr == largest_comp] = True
# return the 'mask' corresponding to the largest connected component
msk_corrected = np.zeros_like(msk)
msk_corrected[cc_arr != 0] = msk[cc_arr != 0]
return msk_corrected
def msk_2_box(msk, threshold):
"""
Compute the 3d bounding box coordinates from the localization heatmap
:param msk: 3d spine localization heatmap
:param threshold: intensity (probability) threshold
:return: 3d bounding box coordinates
"""
msk_temp = np.copy(msk)
msk_temp[msk < threshold] = 0
nzs = np.nonzero(msk_temp)
if len(nzs[0]) > 0:
h_min = np.amin(nzs[0])
w_min = np.amin(nzs[1])
d_min = np.amin(nzs[2])
h_max = np.amax(nzs[0])
w_max = np.amax(nzs[1])
d_max = np.amax(nzs[2])
return [h_min, h_max, w_min, w_max, d_min, d_max]
else:
h, w, d = msk_temp.shape
return [0, h, 0, w, 0, d]
def add_tolerance(box, im_shape, tols):
"""
Add distance tolerance to the dimensions of the bounding box
:param box: 3d bounding box
:param im_shape: image shape where the bounding box is applied
:param tols: tolerances
:return: new 3d bounding box coordinates
"""
h, w, d = im_shape
[h_min, h_max, w_min, w_max, d_min, d_max] = box
h_min = h_min - tols[0]
h_max = h_max + tols[1]
w_min = w_min - tols[2]
w_max = w_max + tols[3]
d_min = d_min - tols[4]
d_max = d_max + tols[5]
if h_min < 0:
h_min = 0
if h_max > h:
h_max = h
if w_min < 0:
w_min = 0
if w_max > w:
w_max = w
if d_min < 0:
d_min = 0
if d_max > d:
d_max = d
return h_min, h_max, w_min, w_max, d_min, d_max
def adjust_box(box, im, image=True):
"""
Adjust bounding box shape
:param box: 3d bounding box
:param im: image or mask where the bounding box is applied
:param image: True if image, False if centroid mask
:return: new 3d image or
"""
# first bounding box
[h_min, h_max, w_min, w_max, d_min, d_max] = box
# based on first box decide tolerance
depth = d_max - d_min
width = w_max - w_min
max_dim = max(depth, width)
# tolerance
tol_h = (50, 50)
tol_d = (0, 0)
# add tolerance on sagittal view depending on bounding box
if max_dim <= 25:
tol_w = (25, 35)
elif max_dim <= 45:
tol_w = (10, 15)
else:
tol_w = (5, 5)
if image:
im_shape = im.shape
else:
im_shape = (im.shape[0], im.shape[1], im.shape[2])
box_tolerance = add_tolerance(box, im_shape, (tol_h[0], tol_h[1], tol_w[0], tol_w[1], tol_d[0], tol_d[1]))
[h_min, h_max, w_min, w_max, d_min, d_max] = box_tolerance
# width and depth must be the same after adding the tolerance
depth = d_max - d_min
width = w_max - w_min
# correct tolerance
if depth > width:
diff = depth - width
if diff % 2 == 0:
tol_w = (tol_w[0] + diff // 2, tol_w[1] + diff // 2)
else:
tol_w = (tol_w[0] + diff // 2, tol_w[1] + diff // 2 + 1)
elif depth < width:
diff = width - depth
if diff % 2 == 0:
tol_d = (tol_d[0] + diff // 2, tol_d[1] + diff // 2)
else:
tol_d = (tol_d[0] + diff // 2, tol_d[1] + diff // 2 + 1)
# second box with tolerance can get out of image margins
box_tolerance = add_tolerance(box, im_shape, (tol_h[0], tol_h[1], tol_w[0], tol_w[1], tol_d[0], tol_d[1]))
[h_min, h_max, w_min, w_max, d_min, d_max] = box_tolerance
# initialize background
height = h_max - h_min
width_depth = 90
if image:
background = np.zeros((height, width_depth, width_depth))
else:
background = np.zeros((height, width_depth, width_depth, 24))
# calculate the difference between background shape and bounding box
w_diff = background.shape[1] - (w_max - w_min)
if w_diff % 2 == 0:
w_background = (w_diff // 2, w_diff // 2)
else:
w_background = (w_diff // 2, w_diff // 2 + 1)
d_diff = background.shape[2] - (d_max - d_min)
if d_diff % 2 == 0:
d_background = (d_diff // 2, d_diff // 2)
else:
d_background = (d_diff // 2, d_diff // 2 + 1)
# place the cropped image in the center of the background
background[:, w_background[0]:background.shape[1] - w_background[1], d_background[0]:background.shape[2] - d_background[1]] = im[h_min:h_max, w_min:w_max, d_min:d_max]
box_background = (w_background[0], background.shape[1] - w_background[1], d_background[0], background.shape[2] - d_background[1])
return background, box_background, box_tolerance
# ----------------------------
# Postprocessing Labelling
# ----------------------------
def masks_2d_to_3d(msk_s, msk_c):
"""
Convert 2d vertebrae centroid heatmaps to 2d
:param msk_s: sagittal 2d centroids mask
:param msk_c: coronal 2d centroids mask
:return msk_3d: 3d vertebrae centroid heatmap
"""
msk_s_3d = np.tile(np.expand_dims(msk_s, 2), reps=[1, 1, np.shape(msk_c)[1], 1])
msk_c_3d = np.tile(np.expand_dims(msk_c, 1), reps=[1, np.shape(msk_s)[1], 1, 1])
msk_3d = msk_c_3d * msk_s_3d
return msk_3d
def mask_to_centroids(msk_3d, verts_in_im):
"""
Convert 3d vertebrae centroid heatmaps to numpy array (list of coordinates)
:param msk_3d: 3d vertebrae centroid heatmap
:param verts_in_im: how many vertebrae were detected
:return cents: vertebrae centroid array of coordinates
"""
h, w, d, chs = msk_3d.shape
cents = np.full((chs, 3), np.nan)
for vert in verts_in_im:
cent_loc = np.unravel_index(np.argmax(msk_3d[..., vert - 1]), (h, w, d))
cents[vert - 1, ...] = cent_loc
return cents
# ---------------------------
# Segmentation Postprocessing
# ---------------------------
def clean_seg_prediction(msk, threshold):
msk[msk < threshold] = 0
msk_binary = np.copy(msk)
msk_binary[msk_binary > threshold] = 1
msk_im = sitk.GetImageFromArray(msk_binary.astype('uint8'))
msk_im.SetSpacing([1, 1, 1])
# connected component filter
connected = sitk.ConnectedComponentImageFilter()
connected.FullyConnectedOn()
cc = connected.Execute(msk_im)
# find largest component
no_of_cc = connected.GetObjectCount()
cc_sizes = np.zeros((1, no_of_cc))
cc_arr = sitk.GetArrayFromImage(cc)
for i in range(1, no_of_cc + 1):
cc_sizes[0, i - 1] = np.count_nonzero(cc_arr == i)
cc_seq = np.argsort(cc_sizes)
largest_comp = cc_seq[0, -1] + 1
# remove every other 'component' other than largest component
cc_arr[cc_arr != largest_comp] = False
cc_arr[cc_arr == largest_comp] = True
# return the 'mask' corresponding to the largest connected component
msk_corrected = np.zeros_like(msk)
msk_corrected[cc_arr != 0] = msk[cc_arr != 0]
return msk_corrected
def refine_mask(msk, threshold):
msk[msk < threshold] = 0
msk_binary = np.copy(msk)
msk_binary[msk_binary > threshold] = 1
msk_im = sitk.GetImageFromArray(msk_binary.astype('uint8'))
msk_im.SetSpacing([1, 1, 1])
# connected component filter
connected = sitk.ConnectedComponentImageFilter()
connected.FullyConnectedOn()
cc = connected.Execute(msk_im)
# find largest component
no_of_cc = connected.GetObjectCount()
cc_sizes = np.zeros((1, no_of_cc))
cc_arr = sitk.GetArrayFromImage(cc)
for i in range(1, no_of_cc + 1):
cc_sizes[0, i - 1] = np.count_nonzero(cc_arr == i)
cc_seq = np.argsort(cc_sizes)
largest_comp = cc_seq[0, -1] + 1
# remove every other 'component' other than largest component
cc_arr[cc_arr != largest_comp] = 0
cc_arr[cc_arr == largest_comp] = 1
return cc_arr
# ---------------------------
# Visualization Localization
# ---------------------------
def plot_hm(im, msk, threshold):
"""
Plot image and localization heatmap (coronal and sagittal views)
:param im: 3d image
:param msk: 3d localization heatmap
:param threshold: intensity (probability) threshold
"""
msk[msk < threshold] = 0
plt.figure(figsize=(8, 8))
plt.subplot(121)
plt.imshow(np.amax(im, -1), cmap="gray")
plt.imshow(np.sum(msk, -1), cmap='gnuplot2', alpha=0.5)
plt.xlabel('%.2f - %.2f' % (np.amin(msk), np.amax(msk)))
plt.subplot(122)
plt.imshow(np.amax(im, 1), cmap="gray")
plt.imshow(np.sum(msk, 1), cmap='gnuplot2', alpha=0.5)
plt.xlabel('%.2f - %.2f' % (np.amin(msk), np.amax(msk)))
def plot_box(im, box):
"""
Plot image and bounding box (coronal and sagittal views)
:param im: 3d image
:param box: bounding box
"""
[h_min, h_max, w_min, w_max, d_min, d_max] = box
fig, ax = plt.subplots(1, 2, figsize=(8, 8))
ax[0].imshow(np.amax(im, -1), cmap="gray")
rect = patches.Rectangle((w_min, h_min), w_max - w_min, h_max - h_min, linewidth=3, edgecolor='g', facecolor='none')
ax[0].add_patch(rect)
ax[1].imshow(np.amax(im, 1), cmap="gray")
rect = patches.Rectangle((d_min, h_min), d_max - d_min, h_max - h_min, linewidth=3, edgecolor='g', facecolor='none')
ax[1].add_patch(rect)
# ---------------------------
# Visualization Labelling
# ---------------------------
def plot_labels(im, cents, im_c=None):
"""
Plot image and bounding box (coronal and sagittal views)
:param im: 3d image
:param cents: vertebrae centroid array of coordinates
"""
if im_c is None:
# im is 3D
im_s = np.amax(im, -1)
im_c = np.amax(im, 1)
else:
# im is im_s
im_s = im
vert_labels = ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7',
'T1', 'T2', 'T3', 'T4', 'T5', 'T6', 'T7', 'T8', 'T9', 'T10', 'T11', 'T12',
'L1', 'L2', 'L3', 'L4', 'L5']
font = {'family': 'monospace',
'color': 'white',
'style': 'normal',
'weight': 'bold',
'size': 9}
plt.subplot(121)
plt.imshow(im_s)
chs_active = np.argwhere(~np.isnan(cents[:, 0]))
for [ch] in chs_active:
loc = cents[ch, [0, 1]].astype(int)
plt.plot([loc[1]], [loc[0]], marker='x', markersize=5)
plt.text(loc[1], loc[0] - 4, vert_labels[ch], fontdict=font)
plt.subplot(122)
plt.imshow(im_c)
chs_active = np.argwhere(~np.isnan(cents[:, 0]))
for [ch] in chs_active:
loc = cents[ch, [0, 2]].astype(int)
plt.plot([loc[1]], [loc[0]], marker='x', markersize=5)
plt.text(loc[1], loc[0] - 4, vert_labels[ch], fontdict=font)
plt.show()
# ---------------------------
# Visualization Localization
# ---------------------------
def plot_segmentation(im, msk):
"""
Plot image and segmentation
:param im: image
:param msk: segmentation mask
:return:
"""
plt.subplot(121)
plt.imshow(np.amax(im, -1))
msk_mip = np.amax(msk, -1)
plt.imshow(msk_mip, cmap='summer')
plt.subplot(122)
plt.imshow(np.amax(im, 1))
msk_mip = np.amax(msk, 1)
plt.imshow(msk_mip, cmap='winter')
plt.show()