-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
99 lines (87 loc) · 3.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
'''
Modified version of the original code from Hu et al., CVPR 2017
@author Hu et al.
@author Christian Wilms
@date 01/05/21
'''
from __future__ import division
import numpy as np
from alchemy.utils.image import resize_blob
from alchemy.utils.mask import crop
from skimage.segmentation import relabel_from_one
import cv2
def transplant(new_net, net, suffix=''):
for p in net.params:
p_new = p + suffix
if p_new not in new_net.params:
print 'dropping', p
continue
for i in range(len(net.params[p])):
if i > (len(new_net.params[p_new]) - 1):
print 'dropping', p, i
break
if net.params[p][i].data.shape != new_net.params[p_new][i].data.shape:
print 'coercing', p, i, 'from', net.params[p][i].data.shape, 'to', new_net.params[p_new][i].data.shape
else:
print 'copying', p, ' -> ', p_new, i
new_net.params[p_new][i].data.flat = net.params[p][i].data.flat
def expand_score(new_net, new_layer, net, layer):
old_cl = net.params[layer][0].num
new_net.params[new_layer][0].data[:old_cl][...] = net.params[layer][0].data
new_net.params[new_layer][1].data[0,0,0,:old_cl][...] = net.params[layer][1].data
def upsample_filt(size):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
def interp(net, layers):
for l in layers:
m, k, h, w = net.params[l][0].data.shape
if m != k and k != 1:
print 'input + output channels need to be the same or |output| == 1'
raise
if h != w:
print 'filters need to be square'
raise
filt = upsample_filt(h)
net.params[l][0].data[range(m), range(k), :, :] = filt
# generate masks from an image with specified net
# :param net: caffe net
# :param input: input image blob ([1, 3, h, w])
# :param config: other parameters
# :param dest_shape: resize masks if specified
# :param image: visualize masks if specified
# :return masks: masks ([num, h, w])
def storeIntermediateResults(net, input, mask8, mask16, mask24, mask32, mask48, mask64, mask96, mask128, image_id, dest_shape=None, image=None):
net.blobs['data'].reshape(*input.shape)
net.blobs['data'].data[...] = input
net.blobs['seg_8'].reshape(*mask8.shape)
net.blobs['seg_8'].data[...] = mask8
net.blobs['seg_16'].reshape(*mask16.shape)
net.blobs['seg_16'].data[...] = mask16
net.blobs['seg_24'].reshape(*mask24.shape)
net.blobs['seg_24'].data[...] = mask24
net.blobs['seg_32'].reshape(*mask32.shape)
net.blobs['seg_32'].data[...] = mask32
net.blobs['seg_48'].reshape(*mask48.shape)
net.blobs['seg_48'].data[...] = mask48
net.blobs['seg_64'].reshape(*mask64.shape)
net.blobs['seg_64'].data[...] = mask64
net.blobs['seg_96'].reshape(*mask96.shape)
net.blobs['seg_96'].data[...] = mask96
net.blobs['seg_128'].reshape(*mask128.shape)
net.blobs['seg_128'].data[...] = mask128
net.forward()
ih, iw = input.shape[2:]
if dest_shape != None:
oh, ow = dest_shape
else:
oh, ow = ih, iw
oh, ow = int(oh), int(ow)
np.savez_compressed('./intermediateResults/image_'+str(image_id)+'.npz', seg8=mask8[0,0], seg16=mask16[0,0], seg24=mask24[0,0], seg32=mask32[0,0], seg48=mask48[0,0], seg64=mask64[0,0], seg96=mask96[0,0], seg128=mask128[0,0],
outShape=np.array([oh,ow]), objn=net.blobs['objn'].data[...], top_k=net.blobs['top_k'].data[...], obj_indices=net.blobs['obj_indices'].data[...],
batchSpxInfos=net.blobs['batchSpxInfos'].data[...], spx_score_sig=net.blobs['spx_score_sig'].data[...])