-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcomfy_latent_interposer.py
169 lines (150 loc) · 5.57 KB
/
comfy_latent_interposer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import torch
import torch.nn as nn
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# v1 = Stable Diffusion 1.x
# xl = Stable Diffusion Extra Large (SDXL)
# v3 = Stable Diffusion Version Three (SD3)
# fx = Black Forest Labs Flux dot One
# cc = Stable Cascade (Stage C) [not used]
# ca = Stable Cascade (Stage A/B)
config = {
"v1-to-xl": {"ch_in": 4, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"v1-to-v3": {"ch_in": 4, "ch_out":16, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"xl-to-v1": {"ch_in": 4, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"xl-to-v3": {"ch_in": 4, "ch_out":16, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"v3-to-v1": {"ch_in":16, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"v3-to-xl": {"ch_in":16, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"fx-to-v1": {"ch_in":16, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"fx-to-xl": {"ch_in":16, "ch_out": 4, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"fx-to-v3": {"ch_in":16, "ch_out":16, "ch_mid": 64, "scale": 1.0, "blocks": 12},
"ca-to-v1": {"ch_in": 4, "ch_out": 4, "ch_mid": 64, "scale": 0.5, "blocks": 12},
"ca-to-xl": {"ch_in": 4, "ch_out": 4, "ch_mid": 64, "scale": 0.5, "blocks": 12},
"ca-to-v3": {"ch_in": 4, "ch_out":16, "ch_mid": 64, "scale": 0.5, "blocks": 12},
}
class ResBlock(nn.Module):
"""Block with residuals"""
def __init__(self, ch):
super().__init__()
self.join = nn.ReLU()
self.norm = nn.BatchNorm2d(ch)
self.long = nn.Sequential(
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.Dropout(0.1)
)
def forward(self, x):
x = self.norm(x)
return self.join(self.long(x) + x)
class ExtractBlock(nn.Module):
"""Increase no. of channels by [out/in]"""
def __init__(self, ch_in, ch_out):
super().__init__()
self.join = nn.ReLU()
self.short = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.long = nn.Sequential(
nn.Conv2d( ch_in, ch_out, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1),
nn.Dropout(0.1)
)
def forward(self, x):
return self.join(self.long(x) + self.short(x))
class InterposerModel(nn.Module):
"""
NN layout, ported from:
https://github.com/city96/SD-Latent-Interposer/blob/main/interposer.py
"""
def __init__(self, ch_in=4, ch_out=4, ch_mid=64, scale=1.0, blocks=12):
super().__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.ch_mid = ch_mid
self.blocks = blocks
self.scale = scale
self.head = ExtractBlock(self.ch_in, self.ch_mid)
self.core = nn.Sequential(
nn.Upsample(scale_factor=self.scale, mode="nearest"),
*[ResBlock(self.ch_mid) for _ in range(blocks)],
nn.BatchNorm2d(self.ch_mid),
nn.SiLU(),
)
self.tail = nn.Conv2d(self.ch_mid, self.ch_out, kernel_size=3, stride=1, padding=1)
def forward(self, x):
y = self.head(x)
z = self.core(y)
return self.tail(z)
class ComfyLatentInterposer:
"""Custom node"""
def __init__(self):
self.version = 4.0 # network revision
self.loaded = None # current model name
self.model = None # current model
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT", ),
"latent_src": (["v1", "xl", "v3", "fx", "ca"],),
"latent_dst": (["v1", "xl", "v3"],),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "convert"
CATEGORY = "latent"
TITLE = "Latent Interposer"
def get_model_path(self, model_name):
fname = f"{model_name}_interposer-v{self.version}.safetensors"
path = os.path.join(os.path.dirname(os.path.realpath(__file__)),"models")
# local path: [models/xl-to-v1_interposer-v4.2.safetensors]
if os.path.isfile(os.path.join(path, fname)):
print("LatentInterposer: Using local model")
return os.path.join(path, fname)
# local path: [models/v4.2/xl-to-v1_interposer-v4.2.safetensors]
if os.path.isfile(os.path.join(path, os.path.join(f"v{self.version}", fname))):
print("LatentInterposer: Using local model")
return os.path.join(path, os.path.join(f"v{self.version}", fname))
# huggingface hub fallback
print("LatentInterposer: Using HF Hub model")
return str(hf_hub_download(
repo_id = "city96/SD-Latent-Interposer",
subfolder = f"v{self.version}",
filename = fname,
))
def convert(self, samples, latent_src, latent_dst):
samples = samples.copy()
if latent_src == latent_dst:
return (samples,)
model_name = f"{latent_src}-to-{latent_dst}"
if model_name not in config:
raise ValueError(f"No model exists for this conversion! ({model_name})")
# only reload if changed
if self.loaded != model_name or self.model is None:
# load/init model
path = self.get_model_path(model_name)
model = InterposerModel(**config[model_name])
model.eval()
model.load_state_dict(load_file(path))
# keep for later runs
self.model = model
self.loaded = model_name
lt = samples["samples"]
with torch.no_grad():
# force FP32, always run on CPU
lt = self.model(
lt.cpu().float()
).to(lt.device).to(lt.dtype)
samples["samples"] = lt
return (samples,)
NODE_CLASS_MAPPINGS = {
"LatentInterposer": ComfyLatentInterposer,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LatentInterposer": ComfyLatentInterposer.TITLE,
}