forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgprgnn_trainer.py
213 lines (184 loc) · 8.89 KB
/
gprgnn_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import os.path as osp
import argparse
from tqdm import tqdm
import numpy as np
import tensorlayerx as tlx
from gammagl.datasets import Planetoid, WebKB, WikipediaNetwork, Amazon # , Actor
from gammagl.models import GPRGNNModel
from gammagl.utils.loop import add_self_loops
from gammagl.utils import calc_gcn_norm
from tensorlayerx.model import TrainOneStep, WithLoss
import gammagl.transforms as T
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, label):
logits = self._backbone(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
train_logits = logits[data['train_mask']]
train_label = label[data['train_mask']]
loss = self._loss_fn(train_logits, train_label)
return loss
def evaluate(net, data, y, mask, metrics):
net.set_eval()
logits = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
_logits = logits[mask]
_label = y[mask]
metrics.update(_logits, _label)
acc = metrics.result()
metrics.reset()
return acc
def index_to_mask(index, size):
mask = np.zeros(size, dtype=np.bool_)
mask[index] = 1
return mask
def random_planetoid_splits(data, num_classes, percls_trn=20, val_lb=500, Flag=0):
# Set new random planetoid splits:
# * round(train_rate*len(data)/num_classes) * num_classes labels for training
# * val_rate*len(data) labels for validation
# * rest labels for testing
indices = []
for i in range(num_classes):
index = (data.y == i).nonzero()[0]
np.random.shuffle(index)
indices.append(index)
train_index = np.concatenate([i[:percls_trn] for i in indices])
if Flag == 0:
rest_index = np.concatenate([i[percls_trn:] for i in indices])
np.random.shuffle(rest_index)
data.train_mask = index_to_mask(train_index, size=data.num_nodes)
data.val_mask = index_to_mask(rest_index[:val_lb], size=data.num_nodes)
data.test_mask = index_to_mask(
rest_index[val_lb:], size=data.num_nodes)
else:
val_index = np.concatenate([i[percls_trn:percls_trn+val_lb]
for i in indices], dim=0)
rest_index = np.concatenate([i[percls_trn+val_lb:] for i in indices])
np.random.shuffle(rest_index)
data.train_mask = index_to_mask(train_index, size=data.num_nodes)
data.val_mask = index_to_mask(val_index, size=data.num_nodes)
data.test_mask = index_to_mask(rest_index, size=data.num_nodes)
return data
def main(args):
# load datasets
if str.lower(args.dataset) in ['cora','pubmed','citeseer']:
dataset = Planetoid(args.dataset_path, args.dataset, transform=T.NormalizeFeatures())
dataset.process()
graph = dataset[0]
elif str.lower(args.dataset) in ['cornell', 'texas']:
dataset = WebKB(args.dataset_path, args.dataset)
dataset.process()
graph = dataset[0]
elif str.lower(args.dataset) in ['computers', 'photo']:
dataset = Amazon(
root=args.dataset_path, name=args.dataset, transform=T.NormalizeFeatures())
dataset.process()
graph = dataset[0]
elif str.lower(args.dataset) in ['chameleon', 'squirrel']:
# use everything from "geom_gcn_preprocess=False" and
# only the node label y from "geom_gcn_preprocess=True"
preProcDs = WikipediaNetwork(
root=args.dataset_path, name=args.dataset, geom_gcn_preprocess=False, transform=T.NormalizeFeatures())
dataset = WikipediaNetwork(
root=args.dataset_path, name=args.dataset, geom_gcn_preprocess=True, transform=T.NormalizeFeatures())
preProcDs.process()
dataset.process()
graph = dataset[0]
graph.edge_index = preProcDs[0].edge_index
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
graph.numpy()
graph.num_nodes = graph.x.shape[0]
###########
#### split the datasets as defined in GPRGNN original paper
###########
train_rate = args.train_rate
val_rate = args.val_rate
percls_trn = int(round(train_rate*len(graph.y)/dataset.num_classes))
val_lb = int(round(val_rate*len(graph.y)))
data = random_planetoid_splits(graph, dataset.num_classes, percls_trn, val_lb)
graph.tensor()
edge_index, _ = add_self_loops(graph.edge_index, n_loops=args.self_loops)
edge_weight = tlx.ops.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes))
x = graph.x
y = graph.y
net = GPRGNNModel(feature_dim=x.shape[1],
hidden_dim=args.hidden_dim,
num_class=dataset.num_classes,
drop_rate=args.drop_rate,
K=args.K,
Init=args.Init,
alpha=args.alpha,
dprate=args.dprate,
Gamma=args.Gamma)
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": x,
"edge_index": edge_index,
"edge_weight": edge_weight,
"train_mask": graph.train_mask,
"test_mask": graph.test_mask,
"val_mask": graph.val_mask,
"num_nodes": graph.num_nodes,
}
best_val_acc = test_acc = 0
val_acc_history = []
for epoch in tqdm(range(args.n_epoch)):
net.set_train()
train_loss = train_one_step(data, y)
val_acc = evaluate(net, data, graph.y, data['val_mask'], metrics)
val_acc_history.append(val_acc)
# print("Epoch [{:0>3d}] ".format(epoch+1)\
# + " train loss: {:.4f}".format(train_loss.item())\
# + " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
net.save_weights(args.best_model_path+net.name+'_'+args.dataset+".npz", format='npz_dict')
if args.early_stopping > 0 and epoch > args.early_stopping:
tmp = np.array(val_acc_history[-(args.early_stopping + 1):-1])
tmp = tlx.convert_to_tensor(tmp.mean())
if val_acc < tmp:
break
net.load_weights(args.best_model_path + net.name + '_'+args.dataset + ".npz", format='npz_dict')
test_acc = evaluate(net, data, graph.y, data['test_mask'], metrics)
print("Test acc: {:.4f}".format(test_acc))
# print("learnable weight:{}".format(tlx.convert_to_numpy(net.all_weights[-1])))
# record_path = osp.abspath("./test_accuracy")
# with open(record_path, "a+") as f:
# f.write("{} {} {:.2f}\n".format(tlx.BACKEND, args.dataset, test_acc * 100))
if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.05, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=1000, help="number of epoch")
parser.add_argument("--early_stopping", type=int, default=200, help="epoch begining to early stop")
parser.add_argument("--hidden_dim", type=int, default=64, help="dimention of hidden layers")
parser.add_argument("--drop_rate", type=float, default=0.5, help="drop_rate")
parser.add_argument("--l2_coef", type=float, default=5e-3, help="l2 loss coeficient")
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--train_rate", type=float, default=0.6, help="ratio of training set")
parser.add_argument("--val_rate", type=float, default=0.2, help="ratio of validation set")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--self_loops", type=int, default=1, help="number of graph self-loop")
parser.add_argument("--dprate", type=float, default=0.5, help="drop rate of gprprop")
parser.add_argument("--Init", type=str, choices=['SGC', 'PPR', 'NPPR', 'Random', 'WS', 'Null'], default="PPR", help="initializaiton method of learnable weight of gprprop")
parser.add_argument("--K", type=int, default=10, help="depth of gprprop")
parser.add_argument("--alpha", type=float, default=0.2, help="initialization of learnable weight of gprprop")
parser.add_argument("--Gamma", type=int, default=2)
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)