-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscenedetector.py
536 lines (409 loc) · 19.1 KB
/
scenedetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import math
import json
import numpy as np
import pytesseract
import titledetector as td
import cv2
import decord
import pickle
from time import perf_counter
from skimage.metrics import structural_similarity as ssim
from datetime import datetime
from collections import Counter
from mtcnn_cv2 import MTCNN
DATA_DIR = os.getcwd()
TARGET_FPS = 0.5
SCENE_DETECT_USE_FACE = 'true'
SCENE_DETECT_USE_OCR = 'true'
SCENE_DETECT_USE_EARLY_DROP = 'true'
SVM_NAME = 'SceneDetectionSVM.sav'
detector = MTCNN()
def require_face_result(curr_frame):
"""
Find all the bounding boxes of face & upper body appeared in a given frame.
Parameters:
curr_frame (image): Frame image
Returns:
tuple:
First element: a boolean indicating if there is any face & upper body found inside the frame
Second element: a list of bounding boxes of face & upper body
"""
# Convert the input image to gray scale
gray_frame = cv2.cvtColor(cv2.resize(
curr_frame, (320, 240)), cv2.COLOR_BGR2RGB)
# Run the face detection
faces = detector.detect_faces(gray_frame)
curr_frame_boxes = [] # [x1, x2, y1, y2]
has_body = False
# Iterate through all the bounding boxes for one frame
for face in faces:
x, y, width, height = face['box']
curr_frame_boxes.append([x, x + width, y, y + height])
# Move x to the center of the face bounding box
x = x + width / 2
# Check if the face is at the center
if x > 0.2 * gray_frame.shape[1] and x < 0.8 * gray_frame.shape[1]:
# Check if the face is large enough
if width / gray_frame.shape[1] > 0.1 or height / gray_frame.shape[0] > 0.1:
has_body = True
body_x = int(x - 2 * width)
if body_x < 0:
body_x = 0
body_y = y + height
body_width = width * 4
body_height = height * 3
curr_frame_boxes.append(
[body_x, body_x + body_width, body_y, body_y + body_height])
return (has_body, curr_frame_boxes)
def require_ssim_with_face_detection(curr_frame, curr_result, last_frame, last_result):
"""
Given two frames with their face & upper body bounding boxes,
find SSIM between them after removing face & upper body
Parameters:
curr_frame (image): Image of the first frame
curr_result (tuple): Face & upper body detection result of the first frame
last_frame (image): Image of the second frame
last_result (tuple): Face & upper body detection result of the second frame
Returns:
float: SSIM after removing face & upper body
"""
curr_frame_with_face_removed = curr_frame.copy()
last_frame_with_face_removed = last_frame.copy()
if curr_result[0]:
curr_boxes = curr_result[1]
for j in range(len(curr_boxes)):
x1, x2, y1, y2 = curr_boxes[j]
curr_frame_with_face_removed[x1:x2, y1:y2] = 0
last_frame_with_face_removed[x1:x2, y1:y2] = 0
if last_result[0]:
last_boxes = last_result[1]
for j in range(len(last_boxes)):
x1, x2, y1, y2 = last_boxes[j]
curr_frame_with_face_removed[x1:x2, y1:y2] = 0
last_frame_with_face_removed[x1:x2, y1:y2] = 0
return ssim(last_frame_with_face_removed, curr_frame_with_face_removed)
def compare_ocr_difference(word_dict_a, word_dict_b):
"""
Calculate the sim_OCR between two frames.
Parameters:
word_dict_a (dict): Key is the words that appeared in the OCR output for frame A
Value is the sum of confidence of each word
word_dict_b (dict): Key is the words that appeared in the OCR output for frame B
Value is the sum of confidence of each word
Returns:
float: Relative OCR similarty between the two frames
"""
total_amount = 0
for k in word_dict_a.keys():
total_amount += word_dict_a[k]
for k in word_dict_b.keys():
total_amount += word_dict_b[k]
if total_amount == 0:
return 1.0
score = 0
for key_a in word_dict_a.keys():
if key_a in word_dict_b.keys():
score += (word_dict_a[key_a] + word_dict_b[key_a])
for key_b in list(set(word_dict_b.keys()) - set(word_dict_a.keys())):
if key_b in word_dict_a.keys():
score += (word_dict_a[key_b] + word_dict_b[key_b])
return score / total_amount
def calculate_score(sim_structural, sim_ocr, sim_structural_no_face, svm_name):
"""
Calculate the final similarties score between two frames. 1 refers to a scene change and 0 refers to not a scene change.
Parameters:
sim_structural (list of float): List of similarities (SSIMs) between frames
sim_ocr (list of float): List of OCR similarities
sim_structural_no_face (list of float): List of similarities (SSIMs) between frames when face is removed
svm_name (string): Filename of the trained SVM model
Returns:
list of float: List of combined_similarities between frames
"""
sim_combined = []
for i in range(len(sim_structural)):
sim_combined.append([sim_structural[i], sim_ocr[i], sim_structural_no_face[i]])
sim_combined = np.array(sim_combined)
# Load the SVM Model
with open(svm_name, 'rb') as f:
loaded_clf = pickle.load(f)
predicted_labels = loaded_clf.predict(sim_combined)
return predicted_labels
def generate_frame_similarity(video_path, num_samples, everyN, start_time):
"""
Generate simlarity values for each sample frames.
Parameters:
video_path (string): Video path
num_samples (list of float): Amount of samples
everyN (list of float): Number of frames that is ignored each iteration
start_time (list of float): Start time of the whole process
Returns:
List of string: Timestamps array of each sample frame
List of float: sim_structural array of each sample frame
List of float: sim_structural_no_face array of each sample frame
List of float: sim_ocr array of each sample frame
"""
SIM_OCR_CONFIDENCE = 55 # OCR confidnece used to generate sim_ocr
DROP_THRESHOLD = 0.95 # Minimum sim_structural confidnece to conclude no scene changes
# Stores the last frame read
last_frame = 0
# Stores the last face detetion result
last_face_detection_result = 0
# Stores the OCR output of last frame read
last_ocr = dict()
# List of similarities (SSIMs) between frames
sim_structural = np.zeros(num_samples)
# List of OCR outputs and OCR similarities
ocr_output = []
sim_ocr = np.zeros(num_samples)
# List of similarities (SSIMs) between frames when face is removed
sim_structural_no_face = np.zeros(num_samples)
timestamps = np.zeros(num_samples)
# Video Reader
vr_full = decord.VideoReader(video_path, ctx=decord.cpu(0))
last_log_time = 0
# For this loop only we are not using real frame numbers; we are skipping frames to improve processing speed
# Avoid memory leak by using del
curr_face_detection_result = None
last_face_detection_result = None
frame_vr = None
frame = None
last_frame = None
ocr_frame = None
str_text = None
for i in range(0, num_samples):
t = perf_counter()
if t >= last_log_time + 30:
print(
f"find_scenes({video_path}): {i}/{num_samples}. Elapsed {int(t-start_time)} s")
last_log_time = t
# Read the next frame, resizing and converting to grayscale
frame_vr = vr_full[i * everyN]
frame = cv2.cvtColor(frame_vr.asnumpy(), cv2.COLOR_RGB2BGR)
# Save the time stamp of each frame
timestamps[i] = vr_full.get_frame_timestamp(i * everyN)[0]
curr_frame = cv2.cvtColor(cv2.resize(
frame, (320, 240)), cv2.COLOR_BGR2GRAY)
# Calculate the SSIM between the current frame and last frame
if i >= 1:
sim_structural[i] = ssim(last_frame, curr_frame)
# Check the sim_structural score to ignore Face Detection and OCR
is_early_drop = (i >= 1 and sim_structural[i] >= DROP_THRESHOLD and SCENE_DETECT_USE_EARLY_DROP)
# Drop Face Detection and OCR
if is_early_drop:
sim_structural[i] = 1 # By setting all of these to 1 we declare that there is no change in frame here.
sim_structural_no_face[i] = 1
sim_ocr[i] = 1
# Continue Face Detection and OCR
else:
if SCENE_DETECT_USE_FACE:
# Run Face Detection upon the current frame
curr_face_detection_result = require_face_result(curr_frame)
# Calculate the SSIM between the current frame and last frame when face & upper body are removed
if i >= 1:
sim_structural_no_face[i] = require_ssim_with_face_detection(
curr_frame, curr_face_detection_result, last_frame, last_face_detection_result)
# Save the current face detection result for the next iteration
del last_face_detection_result
last_face_detection_result = curr_face_detection_result
else:
sim_structural_no_face[i] = sim_structural[i]
if SCENE_DETECT_USE_OCR:
# Calculate the OCR difference between the current frame and last frame
ocr_frame = cv2.cvtColor(cv2.resize(
frame, (480, 360)), cv2.COLOR_BGR2GRAY)
str_text = pytesseract.image_to_data(
ocr_frame, output_type='dict')
phrases = Counter()
for j in range(len(str_text['conf'])):
if int(float(str_text['conf'][j])) >= SIM_OCR_CONFIDENCE and len(str_text['text'][j].strip()) > 0:
phrases[str_text['text'][j]
] += (float(str_text['conf'][j]) / 100)
del str_text
curr_ocr = dict(phrases)
if i >= 1:
sim_ocr[i] = compare_ocr_difference(last_ocr, curr_ocr)
ocr_output.append(phrases)
# Save the current OCR output for the next iteration
if last_ocr:
del last_ocr
last_ocr = curr_ocr
else:
sim_ocr[i] = 1 if i >= 1 else 0
# Save the current frame for the next iteration
if last_frame is not None:
del last_frame
last_frame = curr_frame
# One or more these prevents a memory leak. (16GB over 10,000 samples)
if SCENE_DETECT_USE_OCR:
del curr_face_detection_result
del last_ocr
del last_frame # May prevent a memory leak
del frame_vr
del frame
del curr_frame
return timestamps, sim_structural, sim_structural_no_face, sim_ocr
def extract_scene_information(video_path, timestamps, frame_cuts, everyN, start_time):
"""
Extract useful features from each detected scenes and output scene images.
Parameters:
video_path (string): Video path
timestamps (list of float): Timestamp array for sample frames
frame_cuts (list of float): Frame number array for sample frames
everyN (list of float): Number of frames that is ignored
start_time (list of float): Start time of the whole process
Returns:
string: Features of detected scene as JSOH
"""
OCR_CONFIDENCE = 80 # OCR confidnece used to extract text in detected scenes. Higher confidence to extract insightful information
# we don't want the '.mp4' extension (if it exists)
short_file_name = video_path[
video_path.rfind('/') + 1: video_path.find('.')]
out_directory = os.path.join(DATA_DIR, 'frames', short_file_name)
# Initialize list of scenes
scenes = []
# Iterate through the scene cuts
for i in range(1, len(frame_cuts)):
scenes += [{'frame_start': frame_cuts[i - 1],
'frame_end': frame_cuts[i]}]
cut_detect_time = perf_counter()
print(
f"find_scenes('{video_path}',...) Scene Cut Phase Complete. Time so far {int(cut_detect_time - start_time)} seconds. Starting Image extraction and OCR")
# Write the image file for each scene and convert start/end to timestamp
os.makedirs(out_directory, exist_ok=True)
last_log_time = 0
# Video Reader
vr_full = decord.VideoReader(video_path, ctx=decord.cpu(0))
for i, scene in enumerate(scenes):
requested_frame_number = (
scene['frame_start'] + scene['frame_end']) // 2
t = perf_counter()
if t >= last_log_time + 30:
print(
f"find_scenes({video_path}): {i}/{len(scenes)}. Elapsed {int(t-cut_detect_time)} s")
last_log_time = t
# Read a frame through decord
frame_vr = vr_full[requested_frame_number]
frame = cv2.cvtColor(frame_vr.asnumpy(), cv2.COLOR_RGB2BGR)
img_file = os.path.join(
out_directory, f"{short_file_name}_frame-{requested_frame_number}.jpg")
cv2.imwrite(img_file, frame)
# OCR generation
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
str_text = pytesseract.image_to_data(
gray_frame, output_type='dict')
phrases = []
last_block = -1
phrase = []
for i in range(len(str_text['conf'])):
if int(float(str_text['conf'][i])) >= OCR_CONFIDENCE and len(str_text['text'][i].strip()) > 0:
curr_block = str_text['block_num'][i]
if curr_block != last_block:
if len(phrase) > 0:
phrases.append(' '.join(phrase))
last_block = curr_block
phrase = []
phrase.append(str_text['text'][i])
if len(phrase) > 0:
phrases.append(' '.join(phrase))
# Title generation
frame_height, frame_width, frame_channels = frame.shape
title = td.title_detection(str_text, frame_height, frame_width)
# we dont want microsecond accuracy; the [:12] cuts off the last 3 unwanted digits
scene['start'] = datetime.utcfromtimestamp(timestamps[scene['frame_start'] // everyN]).strftime(
"%H:%M:%S.%f")[:12]
scene['end'] = datetime.utcfromtimestamp(timestamps[scene['frame_end'] // everyN]).strftime("%H:%M:%S.%f")[
:12]
scene['img_file'] = img_file
# Internal debug format; subject to change uses phrases instead
scene['raw_text'] = str_text
scene['phrases'] = phrases # list of strings
scene['title'] = title # detected title as string
# One or more these prevents a memory leak. in the previous stage we observed 16GB over 10,000 samples
# Leading to OOM
del frame_vr
del frame
del gray_frame
del str_text
return scenes
def find_scenes(video_path):
"""
Detects scenes within a video.
Calculates the similarity between each subsequent frame to identify where scene changes are. Report key features
about each scene change.
Parameters:
video_path (string): Path of the video to be used.
Returns:
string: List of dictionaries dumped to a JSON string. Each dict corresponds to a scene/subscene,
with the key/item pairs being:
frame_start (int): Numbering of the frame where the scene starts
frame_end (int): Numbering of the frame where the scene ends
is_subscene (boolean): Indicating if it's a scene or subscene
start (string): Starting timestamp of the scene
end (string): Ending timestamp of the scene
img_file (string): File name of the detected scene image
raw_text (dict): Raw pytesseract result as a dict
phrases (list of strings): Cleaned pytesseract result as a list of strings
title (string): Detected title of the current scene
"""
# CONSTANTS
MIN_SCENE_LENGTH = 1 # Minimum scene length in seconds
assert (os.path.exists(DATA_DIR))
# Extract frames s1,e1,s2,e2,....
# e1 != s2 but s1 is roughly equal to m1
# s1 (m1) e1 s2 (m2) e2
start_time = perf_counter()
print(f"find_scenes({video_path}) starting...")
print(
f"SCENE_DETECT_USE_FACE={SCENE_DETECT_USE_FACE}, SCENE_DETECT_USE_OCR={SCENE_DETECT_USE_OCR}, TARGET_FPS={TARGET_FPS}")
try:
# Check if the video file exsited
if os.path.exists(video_path):
print(f"{video_path}: Found file!")
else:
print(f"{video_path}: File not found -returning empty scene cuts ")
return json.dumps([])
# we don't want the '.mp4' extension (if it exists)
short_file_name = video_path[
video_path.rfind('/') + 1: video_path.find('.')]
out_directory = os.path.join(DATA_DIR, 'frames', short_file_name)
# Get the video capture and number of frames and fps
cap = cv2.VideoCapture(video_path)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = float(cap.get(cv2.CAP_PROP_FPS))
# Input FPS could be < targetFPS
everyN = max(1, int(fps / TARGET_FPS))
print(
f"find_scenes({video_path}): frames={num_frames}. fps={fps}. Sampling every {everyN} frame")
num_samples = num_frames // everyN
# Mininum number of frames per scene
min_samples_between_cut = max(0, int(MIN_SCENE_LENGTH * TARGET_FPS))
# Scene Analysis
timestamps, sim_structural, sim_structural_no_face, sim_ocr = generate_frame_similarity(video_path, num_samples, everyN, start_time)
t = perf_counter()
print(
f"find_scenes('{video_path}',...) Scene Analysis Complete. Time so far {int(t - start_time)} seconds. Defining Scene Cut points next")
# Calculate the combined similarities score
predicted_labels = calculate_score(
sim_structural, sim_ocr, sim_structural_no_face, SVM_NAME)
# Find cuts by finding where combined predicted_labels == 1
samples_cut_candidates = np.argwhere(predicted_labels == 1).flatten()
print(f"{video_path}: {len(samples_cut_candidates)} candidates identified")
if len(samples_cut_candidates) == 0:
print(f"{video_path}:Returning early - no scene cuts found")
return json.dumps([])
# Get real scene cuts by filtering out those that happen within min_frames of the last cut
sample_cuts = [samples_cut_candidates[0]]
for i in range(1, len(samples_cut_candidates)):
if samples_cut_candidates[i] >= samples_cut_candidates[i - 1] + min_samples_between_cut:
sample_cuts += [samples_cut_candidates[i]]
if num_samples > 1:
sample_cuts += [num_samples - 1]
# Now work in frames again. Make sure we are using regular ints (not numpy ints) other json serialization will fail
frame_cuts = [int(s * everyN) for s in sample_cuts]
# Image Extraction and OCR
scenes = extract_scene_information(video_path, timestamps, frame_cuts, everyN, start_time)
return json.dumps(scenes)
except Exception as e:
print(f"find_scenes({video_path}) throwing Exception:" + str(e))
raise e