-
Notifications
You must be signed in to change notification settings - Fork 190
/
Copy pathdetail.html
662 lines (540 loc) · 21.3 KB
/
detail.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<title>detail</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<style>
body{-webkit-font-smoothing:antialiased;font-family:"Helvetica Neue",Helvetica,Arial,Verdana,sans-serif;margin:30px 0 0;padding:0;background:#fff}#wrapper{padding:20px}li{font-size:110%}li li{font-size:100%}li p{font-size:100%;margin:.5em 0}h1{color:#000}h2{color:#111}h3{color:#111;margin:0}h4{color:#111}h5{color:#111}h6{font-size:1em;line-height:1.5em;margin:1.5em 0}body,p,td,div{color:#111;font-family:"Helvetica Neue",Helvetica,Arial,Verdana,sans-serif;word-wrap:break-word}a{color:#0d6ea1;text-decoration:none;-webkit-transition:color 0.2s ease-in-out;-moz-transition:color 0.2s ease-in-out;-o-transition:color 0.2s ease-in-out;-ms-transition:color 0.2s ease-in-out;transition:color 0.2s ease-in-out}a:hover{color:#3593d9}body{font-size:15px;line-height:21px;margin:0 auto}h1{font-size:37px;line-height:42px;margin-top:42px;margin-bottom:21px}h2{font-size:27px;line-height:42px;margin-top:42px;margin-bottom:21px}h3{font-size:20px;line-height:21px;margin-top:21px;margin-bottom:21px}h4{font-size:20px;line-height:21px;margin-top:21px;margin-bottom:21px}p,ul,ol,pre,table,blockquote{margin-top:21px;margin-bottom:21px}hr{border:1px solid;margin:-1px 0}ul ul,ol ol,ul ol,ol ul{margin-top:0;margin-bottom:0}b,strong,em,small,code{line-height:1}.footnote{color:#0d6ea1;font-size:.8em;vertical-align:super}#wrapper img{max-width:100%;height:auto}dd{font-size:1em;margin-bottom:1em}li>p:first-child{margin:0}ul ul,ul ol{margin-bottom:.4em}caption,col,colgroup,table,tbody,td,tfoot,th,thead,tr{border-spacing:0}table{border:1px solid rgba(0,0,0,0.25);border-collapse:collapse;display:table;empty-cells:hide;margin:-1px 0 1.3125em;padding:0;table-layout:fixed}caption{display:table-caption;font-weight:700}col{display:table-column}colgroup{display:table-column-group}tbody{display:table-row-group}tfoot{display:table-footer-group}thead{display:table-header-group}td,th{display:table-cell}tr{display:table-row}table th,table td{font-size:1.1em;line-height:1.3;padding:.5em 1em 0}table thead{background:rgba(0,0,0,0.15);border:1px solid rgba(0,0,0,0.15);border-bottom:1px solid rgba(0,0,0,0.2)}table tbody{background:rgba(0,0,0,0.05)}table tfoot{background:rgba(0,0,0,0.15);border:1px solid rgba(0,0,0,0.15);border-top:1px solid rgba(0,0,0,0.2)}figure{display:inline-block;overflow:hidden;position:relative;margin:1em 0 2em}figcaption{font-style:italic;text-align:center;background:white;color:#666}.poetry pre{display:block;font-family:Georgia,Garamond,serif !important;font-size:110% !important;font-style:italic;line-height:1.6em;margin-left:1em}.poetry pre code{font-family:Georgia,Garamond,serif !important;word-break:break-all;word-break:break-word;-webkit-hyphens:auto;-moz-hyphens:auto;hyphens:auto;white-space:pre-wrap}blockquote p{font-size:110%;font-style:italic;line-height:1.6em}sup,sub,a.footnote{font-size:1.4ex;height:0;line-height:1;position:relative;vertical-align:super}sub{vertical-align:sub;top:-1px}p,h5{font-size:1.1429em;line-height:1.3125em;margin:1.3125em 0}dt,th{font-weight:700}table tr:nth-child(odd),table th:nth-child(odd),table td:nth-child(odd){background:rgba(255,255,255,0.06)}table tr:nth-child(even),table td:nth-child(even){background:rgba(200,200,200,0.25)}@media print{body{font-size:13px !important}img,table,figure{page-break-inside:avoid}#wrapper{background:#fff;color:#303030;padding:10px;position:relative;text-indent:0}}@media screen{.inverted{background:#252a2a}.inverted #wrapper{background:#252a2a;color:#eee}.inverted hr{border-color:#333f40 !important}.inverted p,.inverted td,.inverted li,.inverted h1,.inverted h2,.inverted h3,.inverted h4,.inverted h5,.inverted h6,.inverted th,.inverted .math,.inverted caption,.inverted dt,.inverted dd{color:#eee}.inverted pre{background:#ccc}.inverted pre code{color:#111}.inverted table{background:none}.inverted table tr:nth-child(odd),.inverted table td:nth-child(odd){background:none}.inverted a{color:#acd1d5}::selection{background:rgba(157,193,200,0.5)}h1::selection{background-color:rgba(45,156,208,0.3)}h2::selection{background-color:rgba(90,182,224,0.3)}h3::selection,h4::selection,h5::selection,h6::selection,li::selection,ol::selection{background-color:rgba(133,201,232,0.3)}code::selection{background-color:rgba(0,0,0,0.7);color:#eee}code span::selection{background-color:rgba(0,0,0,0.7) !important;color:#eee !important}a::selection{background-color:rgba(255,230,102,0.2)}.inverted a::selection{background-color:rgba(255,230,102,0.6)}td::selection,th::selection,caption::selection{background-color:rgba(180,237,95,0.5)}}
@media print{
#generated-toc-clone,#generated-toc{display:none!important}hr{border:none!important;page-break-after:always!important}
}
#generated-toc-clone li.missing,#mkreplaced-toc li.missing{list-style-type:none!important}#generated-toc-clone li, #mkreplaced-toc li{list-style-type:upper-roman}#generated-toc-clone li li, #mkreplaced-toc li li{list-style-type:decimal}#generated-toc-clone li li li,#mkreplaced-toc li li li{list-style-type:decimal-leading-zero}#generated-toc-clone li li li li,#mkreplaced-toc li li li li{list-style-type:lower-greek}#generated-toc-clone li li li li li,#mkreplaced-toc li li li li li{list-style-type:disc}#generated-toc-clone li li li li li li,#mkreplaced-toc li li li li li li{list-style-type:square}
</style>
</head>
<body class="normal">
<div id="wrapper">
<h2>Pre-requisites</h2>
<p>Review the following if you are not familiar with them</p>
<ul>
<li>Unix commands</li>
<li>Using <code>git</code> for version control</li>
<li>Writing Markdown</li>
<li>Writing <span class="math">\(\LaTeX\)</span></li>
<li>Using <code>make</code> to build programs</li>
</ul>
<p>The course will cover the basics of Python at an extremely rapid pace. Unless you are an experienced programmer, you should proabbly review basic Python programming skills from the <a href="http://www.greenteapress.com/thinkpython/html/index.html">Think Python</a> book. This is also useful as a refernce when doing assignments.</p>
<p>Also very useful as a refernece is the official <a href="https://docs.python.org/2/tutorial/">Python tutorial</a></p>
<h2>Lecture 1</h2>
<ul>
<li>The IPython notebook
<ul>
<li>Markdown cells</li>
<li>Code cells</li>
<li>The display system</li>
<li>IPython magic</li>
<li>Widgets and the interact decorator</li>
<li>Interfacing with other languages</li>
</ul></li>
<li>Programming in Python
<ul>
<li>Basic types</li>
<li>Basic collections</li>
<li>Control flow</li>
<li>Functions</li>
<li>Classes</li>
<li>Modules</li>
<li>The standard library</li>
<li>PyPI and <code>pip</code></li>
<li>Importing other modules</li>
<li>Using <code>conda</code> virtual environments</li>
</ul></li>
</ul>
<h2>Lecture 2</h2>
<ul>
<li>Functional programming
<ul>
<li>Functions are first class objects</li>
<li>Pure functions</li>
<li>Iterators</li>
<li>Generators</li>
<li>Anonymous functions with lambda</li>
<li>Recursion</li>
<li>Decorators</li>
<li>The <code>operator</code> module</li>
<li>The <code>itertools</code> module</li>
<li>The <code>functools</code> module</li>
<li>The <code>toolz</code> module</li>
<li>Constructing a lazy data pipeline</li>
</ul></li>
<li>Working with text
<ul>
<li>string methods</li>
<li>The <code>string</code> module</li>
<li>The <code>re</code> module</li>
</ul></li>
</ul>
<h2>Computer lab 1</h2>
<ul>
<li>Exercise 1: Generating a report with <code>make</code>, <span class="math">\(\LaTeX\)</span> and python</li>
<li>Exercise 2: Functions to calculate mean, variance and Pearson correlation coefficient</li>
<li>Exercise 3: <a href="https://projecteuler.net/problems">Project Euler puzzle 1</a></li>
<li>Exercise 4: Constructing a functional pipeline using generators</li>
</ul>
<h2>Lecture 3</h2>
<ul>
<li>Obtaining data
<ul>
<li>CSV with <code>csv</code></li>
<li>JSON with <code>json</code></li>
<li>Web scraping with <code>scrapy</code></li>
<li>HDF5 with <code>pyhdf</code></li>
<li>Relational databases and SQL with <code>sqlite3</code></li>
<li>The <code>datasets</code> module</li>
</ul></li>
<li>Scrubbing data
<ul>
<li>Removing comments</li>
<li>Filtering rows</li>
<li>Filtering columns</li>
<li>Fixing inconsistencies</li>
<li>Handling missing data</li>
<li>Removing unwanted information</li>
<li>Derived information</li>
<li>Sanity check and visualization</li>
</ul></li>
</ul>
<h2>Lecture 4</h2>
<ul>
<li>Using <code>numpy</code>
<ul>
<li>Data types</li>
<li>Creating arrays</li>
<li>Indexing</li>
<li>Broadcasting
<ul>
<li>Outer product</li>
</ul></li>
<li>Ufuncs</li>
<li>Generalized Ufuncs</li>
<li>Linear algebra in numpy
<ul>
<li>Calculating covariance matrix</li>
<li>Solving least squares linear regression</li>
</ul></li>
<li>I/O in numpy</li>
</ul></li>
<li>Using <code>pandas</code>
<ul>
<li>Reading and writing data</li>
<li>Split-apply-combine</li>
<li>Merging and joining</li>
<li>Working with time series</li>
</ul></li>
<li>Using <code>blaze</code></li>
</ul>
<h2>Computer lab 2</h2>
<ul>
<li>Exercise 1: Make a 12 by 12 times table chart without looping</li>
<li>Exercise 2: Working with CSV, JSON, HDF5 and RDBMS data</li>
<li>Exercise 3: Working with some data set in <code>pandas</code></li>
<li>Exercise 4: Plotting the scatter matrix for the Iris data set in <code>matplotlib</code>, <code>seaborn</code> and <code>bokeh</code></li>
</ul>
<h2>Lecture 5</h2>
<ul>
<li>From math to computing
<ul>
<li>Computer representation of numbers</li>
<li>Overflow, underflow, catastrophic cancellation</li>
<li>Stability</li>
<li>Conditioning</li>
<li>Direct translation of symbols to code is dangerous</li>
</ul></li>
<li>The purpose of computing is insight not numbers</li>
<li>Use of the computer in statistics
<ul>
<li>Estimating parameters (point and interval estimates)</li>
<li>Estimating functions</li>
<li>Approximating functions (especially PDFs)</li>
<li>Feature extraction, class discovery and dimension reduction</li>
<li>Classification and regression</li>
<li>Simulations and computational inference</li>
</ul></li>
</ul>
<h2>Lecture 6</h2>
<ul>
<li>Algorithmic efficiency and big <span class="math">\(\mathcal{O}\)</span> notation</li>
<li>Some data structures
<ul>
<li>Performance of built-in data structures</li>
<li>Graphs and trees</li>
</ul></li>
<li><a href="http://cs.lmu.edu/~ray/notes/algpatterns/">Algorithmic patterns</a>
<ul>
<li>Divide and conquer</li>
<li>Decrease and conquer</li>
<li>Greedy algorithms</li>
<li>Dynamic programming</li>
<li>Hill climbing</li>
<li>Reduction and transformation</li>
<li>Monte Carlo</li>
</ul></li>
</ul>
<h2>Computer lab 3</h2>
<p>Exercise 1: <a href="https://projecteuler.net/problems">Project Euler puzzle 2</a><br/>
Exercise 2: <a href="https://projecteuler.net/problems">Project Euler puzzle 3</a><br/>
Exercise 3: <a href="https://projecteuler.net/problems">Project Euler puzzle 4</a><br/>
Exercise 4: <a href="https://projecteuler.net/problems">Project Euler puzzle 14</a></p>
<h2>Lecture 7</h2>
<ul>
<li>Numerical linear algebra
<ul>
<li>Simultaneous linear equations</li>
<li>Column space, row space and rank</li>
<li>Column space interpretation is most useful</li>
<li>Rank, basis, span</li>
<li>Norms and distance</li>
<li>Trace and determinant</li>
<li>Eigenvalues and eigenvectors</li>
<li>Inner product</li>
<li>Outer product</li>
<li>Einstein summation notation</li>
</ul></li>
<li>Matrices as linear transforms
<ul>
<li>Types of matrices
<ul>
<li>Square and non-square</li>
<li>Singular</li>
<li>Positive definite</li>
<li>Idempotent and projections</li>
<li>Orthogonal and orthonormal</li>
<li>Symmetric</li>
<li>Hermitian</li>
<li>Transition</li>
</ul></li>
<li>Matrix geometry illustrated</li>
</ul></li>
<li>Matrix decompositions
<ul>
<li>LU (Gaussian elimination)</li>
<li>QR</li>
<li>Spectral</li>
<li>SVD</li>
<li>Cholesky</li>
</ul></li>
<li>Using <code>scipy.linalg</code></li>
<li>BLAS and LAPACK</li>
</ul>
<h2>Lecture 8</h2>
<ul>
<li>Projections, ordination, change of coordinates
<ul>
<li>PCA in detail</li>
<li>PCA with eigendecomposition</li>
<li>PCA with SVD</li>
<li>Related methods
<ul>
<li>ICA</li>
<li>LSA</li>
<li>Factor analysis</li>
</ul></li>
</ul></li>
</ul>
<h2>Computer lab 4</h2>
<ul>
<li>Exercise 1: Solving a least squares problem using Cholesky decomposition</li>
<li>Exercise 2: Implement latent semantic indexing</li>
<li>Exercise 3: Implement k-means clustering</li>
<li>Exercise 4: Use latent semantic indexing to reduce a set of documents to 2D then use k-means to cluster them, and finally plot the result</li>
</ul>
<h2>Lecture 9</h2>
<ul>
<li>Approximating functions
<ul>
<li>Orthogonal function basis</li>
<li>Splines</li>
<li>Kernel density estimation</li>
</ul></li>
<li>Estimating functions
<ul>
<li>Minimizing least squares
<ul>
<li>Linear regression example and the normal equations</li>
</ul></li>
<li>Maximum likelihood
<ul>
<li>Logistic regression example</li>
</ul></li>
<li>Bayesian posterior probability</li>
</ul></li>
</ul>
<h2>Lecture 10</h2>
<ul>
<li>Constrained and unconstrained optimization</li>
<li>Discrete and continuous optimization</li>
<li>Root finding and optimization in 1D
<ul>
<li>Taylor series</li>
<li>Root finding with Newton methods</li>
<li>Root finding with bisection and Brent's method</li>
<li>Line search optimization</li>
</ul></li>
</ul>
<h2>Computer lab 5</h2>
<ul>
<li>Exercise 1: Given a sequence of function values, write a program to perform kernel density estimation using several kernels</li>
<li>Exercise 2: Use line search optimization to solve a 1D logistic regression problem</li>
<li>Exercise 3: Implement the secant method for finding roots in 1D</li>
<li>Exercise 4: Implement Newton's method and find an approximate solution to several equations (including ones that diverge)</li>
</ul>
<h2>Lecture 11</h2>
<ul>
<li>Multivariate optimization
<ul>
<li>GD and SGD</li>
<li>Newton's method and IRLS for GLMs</li>
</ul></li>
<li>Other methods
<ul>
<li>Non-gradient based (e.g. Nelder-Mead)</li>
<li>Global optimization</li>
<li>Discrete optimization
<ul>
<li>Integer programming</li>
<li>Combinatorial optimization</li>
</ul></li>
</ul></li>
<li>Packages for optimization
<ul>
<li>Using <code>scipy.optimization</code></li>
<li>Using <code>statsmodels</code></li>
<li>Using <code>scikits-learn</code></li>
<li>Others: <code>cvxopt</code> and <code>pyopt</code></li>
</ul></li>
<li>General approach to optimization
<ul>
<li>Know the problem</li>
<li>Multiple random starts</li>
<li>Combining algorithms</li>
<li>Graphing progress</li>
</ul></li>
</ul>
<h2>Lecture 12</h2>
<ul>
<li>The EM algorithm (1)
<ul>
<li>Convex and concave functions</li>
<li>Jansen's inequality</li>
<li>Missing data setup</li>
<li>Toy example - coin flipping with 2 biased coins</li>
</ul></li>
</ul>
<h2>Computer lab 6</h2>
<p>Exercise 1: Write the SGD function to solve a multivariate logistic regression problem using maximum likelihood<br/>
Exercise 2: Write the EM algorithm to solve another toy problem<br/>
Exercise 3: Playing with scipy.optimize<br/>
Exercise 4: Playing with scikits-learn</p>
<h2>Lecture 13</h2>
<ul>
<li>The EM algorithm (2)
<ul>
<li>Gaussian mixture model</li>
<li>EM for Bayesians - MAP of posterior distribution</li>
<li>Other applications of EM</li>
<li>EM variants</li>
</ul></li>
</ul>
<h2>Lecture 14</h2>
<ul>
<li>Monte Carlo methods
<ul>
<li>Random number generators</li>
<li>Generating random variates from a distribution</li>
<li>Quadrature and volume estimation</li>
<li>Estimate confidence intervals (bootstrap)</li>
<li>Compare competing statistics (statistical simulation - e.g. power)</li>
<li>Compare models (cross-validation)</li>
<li>Hypothesis testing (permutation-resampling)</li>
</ul></li>
</ul>
<h2>Computer lab 7</h2>
<ul>
<li>Exercise 1: Modify the EM algorithm for GMMs to find the MAP estimate of the posterior distribution</li>
<li>Exercise 2: Use k-fold cross-validation to evaluate which is the best model for a given data set</li>
<li>Exercise 3: Estimate the distribution of the slope in a linear regression model by bootstrapping on the residuals</li>
<li>Exercise 4: Find the type-1 error for <span class="math">\(\alpha =0.05\)</span> by using permutation resampling to correct for multiple testing</li>
</ul>
<h2>Lecture 15</h2>
<ul>
<li>Conducting a simulation experiment (case study)</li>
<li>Experimental design
<ul>
<li>Variables to study</li>
<li>Levels of variables (factorial, Latin hypercube)</li>
<li>Code documentation</li>
<li>Recording results</li>
<li>Reporting</li>
<li>Reproducible analysis with <code>make</code> and <span class="math">\(\LaTeX\)</span></li>
</ul></li>
</ul>
<h2>Lecture 16</h2>
<ul>
<li>MCMC (1)
<ul>
<li>Toy problem - rats on drugs</li>
<li>Monte Carlo estimation</li>
<li>Importance sampling</li>
<li>Metropolis-Hasting</li>
<li>Gibbs sampling</li>
<li>Hamiltonian sampling</li>
<li>Assessing convergence</li>
<li>Using <code>pystan</code></li>
<li>Using <code>pymc2</code></li>
<li>Using <code>emcee</code></li>
</ul></li>
</ul>
<h2>Computer lab 8</h2>
<ul>
<li>Exercise 1: Writing a Gibbs sampler for change point detection</li>
<li>Exercise 2: Using <code>pystan</code></li>
<li>Exercise 3:Using <code>pymc2</code></li>
<li>Exercise 4: Using <code>emcee</code></li>
</ul>
<h2>Lecture 17</h2>
<ul>
<li>MCMC (2)
<ul>
<li>Gaussian mixture model revisited</li>
<li>Gibbs sampling</li>
<li>Infinite mixture model with the Dirichlet process</li>
<li>Simulated tempering</li>
<li><span class="math">\(\text{MC}^3\)</span></li>
</ul></li>
</ul>
<h2>Lecture 18</h2>
<ul>
<li>Profiling
<ul>
<li>Premature optimization is the root of all evil</li>
<li>Using <code>%time</code> and <code>%timeit</code></li>
<li>Profiling with <code>%prun</code></li>
<li>Line profiler</li>
<li>Memory profiler</li>
</ul></li>
<li>Code optimization
<ul>
<li>Use appropriate data structure</li>
<li>Use appropriate algorithm</li>
<li>Use known Python idioms</li>
<li>Use optimized modules</li>
<li>Caching and memoization</li>
<li>Vectorize and broadcast</li>
<li>Views</li>
<li>Stride tricks</li>
</ul></li>
</ul>
<h2>Computer lab 9</h2>
<ul>
<li>Exercise 1 The label-switching problem</li>
<li>Exercise 2:Classifying points with the GMM:</li>
<li>Exercise 3: Profiling source code</li>
<li>Exercise 4 Optimizing source code</li>
</ul>
<h2>Lecture 19</h2>
<ul>
<li>JIT compilation with <code>numba</code></li>
<li>Optimization with <code>cython</code></li>
<li>Wrapping C code</li>
<li>Wrapping C++ code</li>
<li>Wrapping Fortran code</li>
</ul>
<h2>Lecture 20</h2>
<ul>
<li><a href="http://www.pytables.org/docs/CISE-12-2-ScientificPro.pdf">Why modern CPUs are starving and what can be done about it</a></li>
<li>Parallel programming patterns</li>
<li>Amdahl's and GustClassifying points with the Gustafson's laws</li>
<li>Parallel programming examples
<ul>
<li>JIT compilation with <code>numba</code></li>
<li>Toy example - fractals</li>
<li>Using <code>joblib</code></li>
<li>Using <code>multiprocessing</code></li>
<li>Using <code>IPython.Parallel</code></li>
<li>Using <code>MPI4py</code></li>
</ul></li>
</ul>
<h2>Computer lab 10</h2>
<p>Exercise 1: Optimizing EM code with numba<br/>
Exercise 2: Optimizing EM code with Cython<br/>
Exercise 3: Parallel processing of embarrassingly parallel code<br/>
Exercise 4: Parallel processing of code requiring intr-process communication</p>
<h2>Lecture 21</h2>
<ul>
<li>GPU computing
<ul>
<li>Introduction to CUDA</li>
<li>Vanilla matrix multiplication</li>
<li>Matrix multiplication with shared memory</li>
<li>JIT compilation with <code>numba</code></li>
<li>Matrix multiplication in OpneCL</li>
</ul></li>
</ul>
<h2>Lecture 22</h2>
<ul>
<li>Map-reduce and Spark
<ul>
<li>Problem - k-mer counting for DNA sequences</li>
<li>Small scale map-reduce using Python</li>
<li>Using <code>hadoop</code> with <code>mrjob</code></li>
<li>Using <code>spark</code> with <code>pyspark</code></li>
<li>Using <code>MLib</code> for large-scale machine learning</li>
</ul></li>
</ul>
<h2>Computer lab 11</h2>
<p>Exercise 1: Coding fractals in CUDA<br/>
Exercise 2: Something more statistical in CUDA<br/>
Exercise 3: Word count in map-reduce<br/>
Exercise 4: K-mer count with map reduce with E Coli and human genome</p>
<p>Data sets<br/>
- <a href="http://schatzlab.cshl.edu/teaching/exercises/hadoop/data/ecoli.fa.gz">ecoli genome</a><br/>
- <a href="http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/">human genome</a></p>
<h1>Supplementary Mateiral</h1>
<h2>SM 1</h2>
<ul>
<li>Using the command line
<ul>
<li>The Unix philosophy and <code>bash</code></li>
<li>Remote computing with <code>ssh</code></li>
<li>Version control with <code>git</code></li>
<li>Documents with <span class="math">\(\LaTeX\)</span></li>
<li>Automation with <code>make</code></li>
</ul></li>
</ul>
<h2>SM 2</h2>
<ul>
<li>Graphics in Python
<ul>
<li>Using <code>matplotlib</code></li>
<li>Using <code>seaborn</code></li>
<li>Using <code>bokeh</code></li>
<li><a href="http://daft-pgm.org/">Using <code>daft</code></a></li>
</ul></li>
</ul>
<div style="display:none">
<!--This seemingly unnecessary div markup is the only thing keeping this script working after Markdown conversion. Trust me.-->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
processEscapes: true
}
});
</script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
</div>
<!-- ##END MARKED WRAPPER## -->
</div>
</body>
</html>