-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathdriver4.cpp
362 lines (333 loc) · 12.2 KB
/
driver4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright (C) 2007, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include <cassert>
#include <iomanip>
#include "CoinPragma.hpp"
#include "CbcModel.hpp"
#include "OsiClpSolverInterface.hpp"
#include "CbcSolver.hpp"
#include "CbcHeuristicDiveCoefficient.hpp"
#include "CbcHeuristicDiveFractional.hpp"
#include "CbcHeuristicDiveGuided.hpp"
#include "CbcHeuristicDiveVectorLength.hpp"
#include "CbcHeuristicDivePseudoCost.hpp"
#include "CbcHeuristicDiveLineSearch.hpp"
#include "CoinTime.hpp"
//#############################################################################
/************************************************************************
This main program shows how to take advantage of the standalone cbc in your program,
while still making major modifications.
First it reads in an integer model from an mps file
Then it initializes the integer model with cbc defaults
Then it calls CbcMain1 passing all parameters apart from first but with callBack to modify stuff
Finally it prints solution
************************************************************************/
/* Meaning of whereFrom:
1 after initial solve by dualsimplex etc
2 after preprocessing
3 just before branchAndBound (so user can override)
4 just after branchAndBound (before postprocessing)
5 after postprocessing
*/
/* Meaning of model status is as normal
status
-1 before branchAndBound
0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
(or check value of best solution)
1 stopped - on maxnodes, maxsols, maxtime
2 difficulties so run was abandoned
(5 event user programmed event occurred)
cbc secondary status of problem
-1 unset (status_ will also be -1)
0 search completed with solution
1 linear relaxation not feasible (or worse than cutoff)
2 stopped on gap
3 stopped on nodes
4 stopped on time
5 stopped on user event
6 stopped on solutions
7 linear relaxation unbounded
but initially check if status is 0 and secondary status is 1 -> infeasible
or you can check solver status.
*/
/* Return non-zero to return quickly */
static int callBack(CbcModel *model, int whereFrom)
{
int returnCode = 0;
switch (whereFrom) {
case 1:
case 2:
if (!model->status() && model->secondaryStatus())
returnCode = 1;
break;
case 3: {
// Add in some diving heuristics with different options
CbcHeuristicDiveCoefficient heuristicDC(*model);
heuristicDC.setHeuristicName("DiveCoefficient");
// do if no solution
heuristicDC.setWhen(3);
// 150 passes and fix general integers
heuristicDC.setMaxIterations(151);
// make sure can do as many simplex iterations as wanted
heuristicDC.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDC.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDC);
CbcHeuristicDiveFractional heuristicDF(*model);
heuristicDF.setHeuristicName("DiveFractional");
// do if no solution
heuristicDF.setWhen(3);
// 150 passes and don't fix general integers
heuristicDF.setMaxIterations(150);
// make sure can do as many simplex iterations as wanted
heuristicDF.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDF.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDF);
CbcHeuristicDiveGuided heuristicDG(*model);
heuristicDG.setHeuristicName("DiveGuided");
// do if no solution
heuristicDG.setWhen(3);
// 200 passes and fix general integers
heuristicDG.setMaxIterations(201);
// make sure can do as many simplex iterations as wanted
heuristicDG.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDG.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDG);
CbcHeuristicDiveVectorLength heuristicDV(*model);
heuristicDV.setHeuristicName("DiveVectorLength");
// do if no solution
heuristicDV.setWhen(3);
// 150 passes and fix general integers
heuristicDV.setMaxIterations(151);
// make sure can do as many simplex iterations as wanted
heuristicDV.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDV.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDV);
// Second version!
CbcHeuristicDiveVectorLength heuristicDV2(*model);
heuristicDV2.setHeuristicName("DiveVectorLength");
// do if no solution
heuristicDV2.setWhen(3);
// 300 passes and don't fix general integers
heuristicDV2.setMaxIterations(300);
// fix fewer
heuristicDV2.setPercentageToFix(0.05);
// make sure can do as many simplex iterations as wanted
heuristicDV2.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDV2.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDV2);
CbcHeuristicDivePseudoCost heuristicDP(*model);
heuristicDP.setHeuristicName("DivePseudoCost");
// do if no solution
heuristicDP.setWhen(3);
// 100 passes and don't fix general integers
heuristicDP.setMaxIterations(100);
// make sure can do as many simplex iterations as wanted
heuristicDP.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDP.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDP);
CbcHeuristicDiveLineSearch heuristicDL(*model);
heuristicDL.setHeuristicName("DiveLineSearch");
// do if no solution
heuristicDL.setWhen(3);
// 150 passes and fix general integers
heuristicDL.setMaxIterations(151);
// make sure can do as many simplex iterations as wanted
heuristicDL.setMaxSimplexIterations(COIN_INT_MAX);
heuristicDL.setMaxSimplexIterationsAtRoot(COIN_INT_MAX);
model->addHeuristic(&heuristicDL);
//CbcCompareUser compare;
//model->setNodeComparison(compare);
} break;
case 4:
// If not good enough could skip postprocessing
break;
case 5:
break;
default:
abort();
}
return returnCode;
}
#include "CbcEventHandler.hpp"
/** This is so user can trap events and do useful stuff.
CbcModel model_ is available as well as anything else you care
to pass in
*/
class MyEventHandler3 : public CbcEventHandler {
public:
/**@name Overrides */
//@{
virtual CbcAction event(CbcEvent whichEvent);
//@}
/**@name Constructors, destructor etc*/
//@{
/** Default constructor. */
MyEventHandler3();
/// Constructor with pointer to model (redundant as setEventHandler does)
MyEventHandler3(CbcModel *model);
/** Destructor */
virtual ~MyEventHandler3();
/** The copy constructor. */
MyEventHandler3(const MyEventHandler3 &rhs);
/// Assignment
MyEventHandler3 &operator=(const MyEventHandler3 &rhs);
/// Clone
virtual CbcEventHandler *clone() const;
//@}
protected:
// data goes here
};
//-------------------------------------------------------------------
// Default Constructor
//-------------------------------------------------------------------
MyEventHandler3::MyEventHandler3()
: CbcEventHandler()
{
}
//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------
MyEventHandler3::MyEventHandler3(const MyEventHandler3 &rhs)
: CbcEventHandler(rhs)
{
}
// Constructor with pointer to model
MyEventHandler3::MyEventHandler3(CbcModel *model)
: CbcEventHandler(model)
{
}
//-------------------------------------------------------------------
// Destructor
//-------------------------------------------------------------------
MyEventHandler3::~MyEventHandler3()
{
}
//----------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------
MyEventHandler3 &
MyEventHandler3::operator=(const MyEventHandler3 &rhs)
{
if (this != &rhs) {
CbcEventHandler::operator=(rhs);
}
return *this;
}
//-------------------------------------------------------------------
// Clone
//-------------------------------------------------------------------
CbcEventHandler *MyEventHandler3::clone() const
{
return new MyEventHandler3(*this);
}
CbcEventHandler::CbcAction
MyEventHandler3::event(CbcEvent whichEvent)
{
// If in sub tree carry on
if (!model_->parentModel()) {
if (whichEvent == solution || whichEvent == heuristicSolution) {
#ifdef STOP_EARLY
return stop; // say finished
#else
// If preprocessing was done solution will be to processed model
int numberColumns = model_->getNumCols();
const double *bestSolution = model_->bestSolution();
assert(bestSolution);
printf("event handler received a solution with cost %g\n", model_->getObjValue());
// printing solution contents
//for (int i = 0; i < numberColumns; i++) {
// if (fabs(bestSolution[i]) > 1.0e-8)
// printf("%d %g\n", i, bestSolution[i]);
//}
return noAction; // carry on
#endif
} else {
return noAction; // carry on
}
} else {
return noAction; // carry on
}
}
int main(int argc, const char *argv[])
{
OsiClpSolverInterface solver1;
//#define USE_OSI_NAMES
#ifdef USE_OSI_NAMES
// Say we are keeping names (a bit slower this way)
solver1.setIntParam(OsiNameDiscipline, 1);
#endif
// Read in model using argv[1]
// and assert that it is a clean model
std::string mpsFileName;
#if defined(SAMPLEDIR)
mpsFileName = SAMPLEDIR "/p0033.mps";
#else
if (argc < 2) {
fprintf(stderr, "Do not know where to find sample MPS files.\n");
exit(1);
}
#endif
if (argc >= 2)
mpsFileName = argv[1];
int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(), "");
if (numMpsReadErrors != 0) {
printf("%d errors reading MPS file\n", numMpsReadErrors);
return numMpsReadErrors;
}
// Tell solver to return fast if presolve or initial solve infeasible
solver1.getModelPtr()->setMoreSpecialOptions(3);
/* Two ways of doing this depending on whether NEW_STYLE_SOLVER defined.
So we need pointer to model. Old way could use modelA. rather than model->
*/
// Messy code below copied from CbcSolver.cpp
// Pass to Cbc initialize defaults
CbcModel modelA(solver1);
CbcSolverUsefulData solverData;
CbcModel *model = &modelA;
CbcMain0(modelA,solverData);
// Event handler
MyEventHandler3 eventHandler;
model->passInEventHandler(&eventHandler);
/* Now go into code for standalone solver
Could copy arguments and add -quit at end to be safe
but this will do
*/
if (argc > 2) {
CbcMain1(argc - 1, argv + 1, modelA, callBack,solverData);
} else {
const char *argv2[] = { "driver4", "-solve", "-quit" };
CbcMain1(3, argv2, modelA, callBack,solverData);
}
// Solver was cloned so get current copy
OsiSolverInterface *solver = model->solver();
// Print solution if finished (could get from model->bestSolution() as well
if (model->bestSolution()) {
const double *solution = solver->getColSolution();
int iColumn;
int numberColumns = solver->getNumCols();
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14);
std::cout << "--------------------------------------" << std::endl;
#ifdef USE_OSI_NAMES
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value = solution[iColumn];
if (fabs(value) > 1.0e-7 && solver->isInteger(iColumn))
std::cout << std::setw(6) << iColumn << " " << std::setw(8) << setiosflags(std::ios::left) << solver->getColName(iColumn)
<< resetiosflags(std::ios::adjustfield) << std::setw(14) << " " << value << std::endl;
}
#else
// names may not be in current solver - use original
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value = solution[iColumn];
if (fabs(value) > 1.0e-7 && solver->isInteger(iColumn))
std::cout << std::setw(6) << iColumn << " " << std::setw(8) << setiosflags(std::ios::left) << solver1.getModelPtr()->columnName(iColumn)
<< resetiosflags(std::ios::adjustfield) << std::setw(14) << " " << value << std::endl;
}
#endif
std::cout << "--------------------------------------" << std::endl;
std::cout << std::resetiosflags(std::ios::fixed | std::ios::showpoint | std::ios::scientific);
} else {
std::cout << " No solution!" << std::endl;
}
return 0;
}