-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathsample5.cpp
310 lines (254 loc) · 9.83 KB
/
sample5.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "CbcConfig.h"
#include "CoinPragma.hpp"
#include <cassert>
#include <iomanip>
// For Branch and bound
#include "OsiSolverInterface.hpp"
#include "CbcModel.hpp"
#include "CbcBranchUser.hpp"
#include "CbcCompareUser.hpp"
#include "CbcCutGenerator.hpp"
#include "CbcHeuristicLocal.hpp"
#include "OsiClpSolverInterface.hpp"
// Cuts
#include "CglGomory.hpp"
#include "CglProbing.hpp"
#include "CglKnapsackCover.hpp"
#include "CglOddHole.hpp"
#include "CglClique.hpp"
#include "CglFlowCover.hpp"
#include "CglMixedIntegerRounding.hpp"
// Heuristics
#include "CbcHeuristic.hpp"
// Methods of building
#include "CoinBuild.hpp"
#include "CoinModel.hpp"
#include "CoinTime.hpp"
/************************************************************************
This main program creates an integer model and then solves it
It then sets up some Cgl cut generators and calls branch and cut.
Branching is simple binary branching on integer variables.
Node selection is depth first until first solution is found and then
based on objective and number of unsatisfied integer variables.
In this example the functionality is the same as default but it is
a user comparison function.
Variable branching selection is on maximum minimum-of-up-down change
after strong branching on 5 variables closest to 0.5.
A simple rounding heuristic is used.
************************************************************************/
int main(int argc, const char *argv[])
{
/* Define your favorite OsiSolver.
CbcModel clones the solver so use solver1 up to the time you pass it
to CbcModel then use a pointer to cloned solver (model.solver())
*/
OsiClpSolverInterface solver1;
/* From now on we can build model in a solver independent way.
You can add rows one at a time but for large problems this is slow so
this example uses CoinBuild or CoinModel
*/
OsiSolverInterface *solver = &solver1;
// Data (is exmip1.mps in Mps/Sample
// Objective
double objValue[] = { 1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0 };
// Lower bounds for columns
double columnLower[] = { 2.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0 };
// Upper bounds for columns
double columnUpper[] = { COIN_DBL_MAX, 4.1, 1.0, 1.0, 4.0,
COIN_DBL_MAX, COIN_DBL_MAX, 4.3 };
// Lower bounds for row activities
double rowLower[] = { 2.5, -COIN_DBL_MAX, -COIN_DBL_MAX, 1.8, 3.0 };
// Upper bounds for row activities
double rowUpper[] = { COIN_DBL_MAX, 2.1, 4.0, 5.0, 15.0 };
// Matrix stored packed
int column[] = { 0, 1, 3, 4, 7,
1, 2,
2, 5,
3, 6,
4, 7 };
double element[] = { 3.0, 1.0, -2.0, -1.0, -1.0,
2.0, 1.1,
1.0, 1.0,
2.8, -1.2,
1.0, 1.9 };
int starts[] = { 0, 5, 7, 9, 11, 13 };
// Integer variables (note upper bound already 1.0)
int whichInt[] = { 2, 3 };
int numberRows = (int)(sizeof(rowLower) / sizeof(double));
int numberColumns = (int)(sizeof(columnLower) / sizeof(double));
#define BUILD 2
#if BUILD == 1
// Using CoinBuild
// First do columns (objective and bounds)
int i;
// We are not adding elements
for (i = 0; i < numberColumns; i++) {
solver->addCol(0, NULL, NULL, columnLower[i], columnUpper[i],
objValue[i]);
}
// mark as integer
for (i = 0; i < (int)(sizeof(whichInt) / sizeof(int)); i++)
solver->setInteger(whichInt[i]);
// Now build rows
CoinBuild build;
for (i = 0; i < numberRows; i++) {
int startRow = starts[i];
int numberInRow = starts[i + 1] - starts[i];
build.addRow(numberInRow, column + startRow, element + startRow,
rowLower[i], rowUpper[i]);
}
// add rows into solver
solver->addRows(build);
#else
/* using CoinModel - more flexible but still beta.
Can do exactly same way but can mix and match much more.
Also all operations are on building object
*/
CoinModel build;
// First do columns (objective and bounds)
int i;
for (i = 0; i < numberColumns; i++) {
build.setColumnBounds(i, columnLower[i], columnUpper[i]);
build.setObjective(i, objValue[i]);
}
// mark as integer
for (i = 0; i < (int)(sizeof(whichInt) / sizeof(int)); i++)
build.setInteger(whichInt[i]);
// Now build rows
for (i = 0; i < numberRows; i++) {
int startRow = starts[i];
int numberInRow = starts[i + 1] - starts[i];
build.addRow(numberInRow, column + startRow, element + startRow,
rowLower[i], rowUpper[i]);
}
// add rows into solver
solver->loadFromCoinModel(build);
#endif
// Pass to solver
CbcModel model(*solver);
model.solver()->setHintParam(OsiDoReducePrint, true, OsiHintTry);
// Set up some cut generators and defaults
// Probing first as gets tight bounds on continuous
CglProbing generator1;
generator1.setUsingObjective(true);
generator1.setMaxPass(3);
generator1.setMaxProbe(100);
generator1.setMaxLook(50);
generator1.setRowCuts(3);
// generator1.snapshot(*model.solver());
//generator1.createCliques(*model.solver(),2,1000,true);
//generator1.setMode(0);
CglGomory generator2;
// try larger limit
generator2.setLimit(300);
CglKnapsackCover generator3;
CglOddHole generator4;
generator4.setMinimumViolation(0.005);
generator4.setMinimumViolationPer(0.00002);
// try larger limit
generator4.setMaximumEntries(200);
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding mixedGen;
CglFlowCover flowGen;
// Add in generators
model.addCutGenerator(&generator1, -1, "Probing");
model.addCutGenerator(&generator2, -1, "Gomory");
model.addCutGenerator(&generator3, -1, "Knapsack");
model.addCutGenerator(&generator4, -1, "OddHole");
model.addCutGenerator(&generator5, -1, "Clique");
model.addCutGenerator(&flowGen, -1, "FlowCover");
model.addCutGenerator(&mixedGen, -1, "MixedIntegerRounding");
OsiClpSolverInterface *osiclp = dynamic_cast< OsiClpSolverInterface * >(model.solver());
// go faster stripes
if (osiclp->getNumRows() < 300 && osiclp->getNumCols() < 500) {
osiclp->setupForRepeatedUse(2, 0);
printf("trying slightly less reliable but faster version (? Gomory cuts okay?)\n");
printf("may not be safe if doing cuts in tree which need accuracy (level 2 anyway)\n");
}
// Allow rounding heuristic
CbcRounding heuristic1(model);
model.addHeuristic(&heuristic1);
// And local search when new solution found
CbcHeuristicLocal heuristic2(model);
model.addHeuristic(&heuristic2);
// Redundant definition of default branching (as Default == User)
CbcBranchUserDecision branch;
model.setBranchingMethod(&branch);
// Definition of node choice
CbcCompareUser compare;
model.setNodeComparison(compare);
// Do initial solve to continuous
model.initialSolve();
// Could tune more
model.setMinimumDrop(std::min(1.0,
fabs(model.getMinimizationObjValue()) * 1.0e-3 + 1.0e-4));
if (model.getNumCols() < 500)
model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible
else if (model.getNumCols() < 5000)
model.setMaximumCutPassesAtRoot(100); // use minimum drop
else
model.setMaximumCutPassesAtRoot(20);
//model.setMaximumCutPasses(5);
// Switch off strong branching if wanted
// model.setNumberStrong(0);
// Do more strong branching if small
if (model.getNumCols() < 5000)
model.setNumberStrong(10);
model.solver()->setIntParam(OsiMaxNumIterationHotStart, 100);
// If time is given then stop after that number of minutes
if (argc > 2) {
int minutes = atoi(argv[2]);
std::cout << "Stopping after " << minutes << " minutes" << std::endl;
assert(minutes >= 0);
model.setDblParam(CbcModel::CbcMaximumSeconds, 60.0 * minutes);
}
// Switch off most output
if (model.getNumCols() < 3000) {
model.messageHandler()->setLogLevel(1);
//model.solver()->messageHandler()->setLogLevel(0);
} else {
model.messageHandler()->setLogLevel(2);
model.solver()->messageHandler()->setLogLevel(1);
}
double time1 = CoinCpuTime();
// Do complete search
model.branchAndBound();
std::cout << " Branch and cut took " << CoinCpuTime() - time1 << " seconds, "
<< model.getNodeCount() << " nodes with objective "
<< model.getObjValue()
<< (!model.status() ? " Finished" : " Not finished")
<< std::endl;
// Print more statistics
std::cout << "Cuts at root node changed objective from " << model.getContinuousObjective()
<< " to " << model.rootObjectiveAfterCuts() << std::endl;
int numberGenerators = model.numberCutGenerators();
for (int iGenerator = 0; iGenerator < numberGenerators; iGenerator++) {
CbcCutGenerator *generator = model.cutGenerator(iGenerator);
std::cout << generator->cutGeneratorName() << " was tried "
<< generator->numberTimesEntered() << " times and created "
<< generator->numberCutsInTotal() << " cuts of which "
<< generator->numberCutsActive() << " were active after adding rounds of cuts"
<< std::endl;
}
// Print solution if any - we can't get names from Osi!
if (model.getMinimizationObjValue() < 1.0e50) {
int numberColumns = model.solver()->getNumCols();
const double *solution = model.solver()->getColSolution();
int iColumn;
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14);
std::cout << "--------------------------------------" << std::endl;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value = solution[iColumn];
if (fabs(value) > 1.0e-7 && model.solver()->isInteger(iColumn))
std::cout << std::setw(6) << iColumn << " " << value << std::endl;
}
std::cout << "--------------------------------------" << std::endl;
std::cout << std::resetiosflags(std::ios::fixed | std::ios::showpoint | std::ios::scientific);
}
return 0;
}