-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_merging.py
138 lines (118 loc) · 4.34 KB
/
simple_merging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Merge putatively redundant alleles per-locus
"""
import sys
import json
import argparse
import tdb
import truvari
import numpy as np
import pandas as pd
def build_matrix(alleles, threshold=0.98):
"""
Compare all-against-all to build a boolean adjacency matrix
"""
n_entries = len(alleles)
match_matrix = np.zeros((n_entries, n_entries), dtype=bool)
for i in range(n_entries - 1):
for j in range(i + 1, n_entries):
szsim, _ = truvari.sizesim(len(alleles[i]), len(alleles[j]))
state = True
if szsim < threshold:
state = False
else:
sqsim = truvari.seqsim(alleles[i], alleles[j])
if sqsim < threshold:
state = False
match_matrix[i, j] = state
match_matrix[j, i] = state
return match_matrix
def find_matching_sets(matrix, locus_id):
"""
Creates a lookup of which alleles match
returns the new allele numbers lookup as dict and a list of original
allele numbers to keep
"""
n = len(matrix)
visited = [False] * n
matched_sets = []
def dfs(item, current_set):
"""
Depth first search to find chain of matches
"""
visited[item] = True
current_set.append(item) # alt alleles start at number 1
for other in range(n):
if matrix[item][other] and not visited[other]:
dfs(other, current_set)
for i in range(n):
if not visited[i]:
current_set = []
dfs(i, current_set)
matched_sets.append(current_set)
# This just keeps the first allele
# A better strategy would be to keep the most frequently observed allele
to_keep = [(locus_id, idx[0]) for idx in matched_sets]
# Create a lookup of old allele number to the new allele number
to_rename = {(locus_id, old_num): new_num
for new_num, entry_set in enumerate(matched_sets)
for old_num in entry_set}
return to_rename, to_keep
def table_updater(table, all_to_rename, all_to_keep):
"""
Given an allele or a sample table, subset to locus/allele that need to be kept and
rename the remaining allele numbers.
All updating happens in-place
"""
table.set_index(['LocusID', 'allele_number'], inplace=True)
keep = table.index.isin(all_to_keep)
table.drop(table.index[~keep], inplace=True)
table.index = table.index.map(lambda idx: (idx[0], all_to_rename.get(idx, idx[1])))
table.reset_index(inplace=True)
def merge_main(args):
"""
Create a new tdb from multiple input calls
"""
parser = argparse.ArgumentParser(prog="tdb create", description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("-o", "--output", metavar="OUT", required=True,
help="Output tdb directory")
parser.add_argument("--threshold", type=float, default=0.98,
help="Similarity threshold")
parser.add_argument("--debug", action="store_true",
help="Verbose logging")
parser.add_argument("input", metavar="IN",
help="Input tdb")
args = parser.parse_args(args)
d = tdb.load_tdb(args.input, lfilters=[('LocusID', '=', 9)])
print(d)
stats = {'n_loci': 0,
'n_collap_loci': 0,
'n_alleles': 0,
'n_collap_alleles': 0}
all_to_rename = {}
all_to_keep = []
for (grp,), alleles in d['allele'].groupby(['LocusID']):
matrix = build_matrix(list(alleles['sequence']), args.threshold)
to_rename, to_keep = find_matching_sets(matrix, grp)
a1 = len(alleles)
a2 = len(to_keep)
stats['n_alleles'] += a1
stats['n_loci'] += a2
if a1 != a2:
stats['n_collap_loci'] += 1
stats['n_collap_alleles'] += a1 - a2
all_to_rename.update(to_rename)
all_to_keep.extend(to_keep)
all_to_rename = pd.Series(all_to_rename)
print('what')
print(all_to_rename)
print()
table_updater(d['allele'], all_to_rename, all_to_keep)
for samp in d['sample'].values():
table_updater(samp, all_to_rename, all_to_keep)
tdb.save_tdb(d, "out.tdb")
print(d)
print(json.dumps(stats, indent=4))
if __name__ == '__main__':
merge_main(sys.argv[1:])