-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathplot.py
142 lines (106 loc) · 3.49 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def plot_2d_space(
model, one_hot_encoder, x, y, n=None, reverse=False,
save_to=None, dpi=256,
):
"""
For models trained on equations ala 'a + b', this will plot a scatter plot
with correct examples in green and incorrect ones in red.
"""
if n is None:
n = len(x)
order = -1 if reverse else 1
predictions = model.predict(x[:n])
correct_coords = []
incorrect_coords = []
for i, prediction in enumerate(predictions):
target = y[i]
equation_string = one_hot_to_string(x[i])[::order]
prediction_string = one_hot_to_string(prediction)[::order]
target_string = one_hot_to_string(target)[::order]
equation_plus_index = equation_string.index('+')
n1 = int(equation_string[:equation_plus_index-1])
n2 = int(equation_string[equation_plus_index+1:-1])
if prediction_string == target_string:
# Correct
correct_coords.append((n1, n2,))
else:
incorrect_coords.append((n1, n2,))
# Create plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, axisbg="1.0")
correct_coords = np.array(correct_coords)
ax.scatter(
correct_coords[:, 0],
correct_coords[:, 1],
alpha=0.33, c='green', edgecolors='none', s=20, label='correct'
)
incorrect_coords = np.array(incorrect_coords)
ax.scatter(
incorrect_coords[:, 0],
incorrect_coords[:, 1],
alpha=0.33, c='red', edgecolors='none', s=20, label='incorrect'
)
if save_to:
plt.savefig(save_to, dpi=dpi)
else:
plt.show()
plt.close()
def plot_error_histogram(
model, one_hot_encoder, x, y, n=None, max_d=10, reverse=False
):
"""
For models trained on equations ala 'a + b', this will plot a histogram of
error differences.
"""
if n is None:
n = len(x)
order = -1 if reverse else 1
predictions = model.predict(x[:n])
differences = [0] * max_d
for i, prediction in enumerate(predictions):
target = y[i]
prediction_string = one_hot_to_string(prediction)[::order]
target_string = one_hot_to_string(target)[::order]
prediction_int = int(prediction_string.strip(' \x00'))
target_int = int(target_string.strip(' \x00'))
difference = abs(target_int - prediction_int)
if difference >= max_d:
difference = max_d - 1
differences[difference] += 1
# Create plot
fig = plt.figure()
n, bins, patches = plt.hist(differences, normed=1, facecolor='green')
plt.show()
plt.close()
def plot_training_log(
log_file_name='log.csv', metric='acc', save_to=None, dpi=256,
):
"""
Plot a training log csv generated by CSVLogger. Will display the plot,
or if you pass a save_to filename, render to a file.
"""
log = pd.read_csv(log_file_name)
if metric == 'acc':
col_train = log.columns[1]
col_test = log.columns[3]
title = 'Accuracy ({})'.format(col_train)
elif metric == 'loss':
col_train = log.columns[2]
col_test = log.columns[4]
title = 'Loss'
else:
raise ValueError('Metric not s')
plt.plot(log[col_train])
plt.plot(log[col_test])
plt.title(title)
plt.ylabel(metric)
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='lower right')
if save_to:
plt.savefig(save_to, dpi=dpi)
else:
plt.show()
plt.close()