-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvisualize.py
73 lines (52 loc) · 1.93 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
from tensorflow.keras import backend as K
def get_single_greyscale(pixel):
val = 232 + round(pixel * 23)
return '\x1b[48;5;{}m \x1b[0m'.format(int(val))
def print_greyscale(pixels):
if len(pixels.shape) == 1:
print(''.join(get_single_greyscale(p) for p in pixels))
elif len(pixels.shape) == 2:
for line in pixels:
print(''.join(get_single_greyscale(p) for p in line))
else:
raise ValueError(
'Can\'t visualize tensors with more than two dimensions'
)
def normalize_weights_to_pixels(vector, magnitude=1.0):
if magnitude is None:
if type(vector) is np.ndarray:
magnitude = max(vector.max(), - vector.min())
else:
magnitude = max(max(vector), - min(vector))
return vector / magnitude / 2.0 + .5
def print_vector(vector, normalize=True):
if normalize:
magnitude = max(1.0, vector.max(), - vector.min())
vector = normalize_weights_to_pixels(vector, magnitude=magnitude)
print_greyscale(vector)
def get_activations(model, layer, x_batch):
"""
Get the model's activations at the given layer for the given batch of
input values.
Source: https://github.com/fchollet/keras/issues/41#issuecomment-219262860
"""
get_activations = K.function(
[model.layers[0].input, K.learning_phase()],
[model.layers[layer].output]
)
activations = get_activations([x_batch, 0])
return activations[0]
def print_activations(model, x):
x_batch = np.array([x])
for i, layer in enumerate(model.layers):
if (
layer.name.startswith('repeat_vector') or
layer.name.startswith('dropout')
):
# Some layers add no information, so we ignore them
continue
activations = get_activations(model, i, [x])[0]
print('Layer "{}":'.format(layer.name))
print_vector(activations)
print()