-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvisualize_lstm.py
211 lines (155 loc) · 5.73 KB
/
visualize_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, RepeatVector, Dense, Dropout, Activation, TimeDistributed
def _copy_weights(trained_model, new_model):
"""
Given a old, trained model, and a new, random model, copy the trained
weights over to the new one.
"""
for i, new_layer in enumerate(new_model.layers):
if not new_layer._trainable_weights:
continue
trained_layer = trained_model.layers[i]
print('Loading layer', new_layer.name, 'from', trained_layer.name)
new_layer.set_weights(trained_layer.get_weights())
def build_stateful_model_with_weights(trained_model, length=None):
"""
Builds a model similar to the standard blog post model, but makes it
stateful. Pass a blogpost model in to load its weights. Set length to
1 if you want to go through the model layer by layer.
"""
if length is None:
length = MAX_EQUATION_LENGTH
batch_input_shape = (1, length, N_FEATURES)
model = Sequential()
# Encoder:
model.add(LSTM(
256, batch_input_shape=batch_input_shape, stateful=True,
))
model.add(Dropout(0.25))
# The RepeatVector-layer repeats the input n times
model.add(RepeatVector(MAX_RESULT_LENGTH))
# Decoder:
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.25))
model.add(TimeDistributed(Dense(N_FEATURES)))
model.add(Activation('softmax'))
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'],
)
_copy_weights(trained_model, model)
return model
def get_lstm_output(layer, x):
"""
Given a layer and an input, calculates the output.
"""
return K.function(
[layer.input],
[layer.output]
)([x])[0]
def get_activations_char_by_char_old(
model, input_string, layer_i=0, stateful_model=None
):
"""
Given a model and an input_string, returns the activation of the first
layer after each character.
This is an older implementation using stateful LSTMs.
If you already have a stateful_model with length=1, you can pass it in.
"""
stateful_model = (
stateful_model or build_stateful_model_with_weights(model, 1)
)
layer = stateful_model.layers[layer_i]
stateful_model.reset_states()
current_input_string = ''
activations = [None] * len(input_string)
for i, char in enumerate(input_string):
current_input_string += char
x = np.zeros(stateful_model.layers[0].batch_input_shape)
x[0, 0, CHAR_TO_INDEX[char]] = 1
output = get_lstm_output(layer, x)
activations[i] = get_lstm_output(layer, x)
return activations
def get_activations_char_by_char(
model, input_string, layer_i=0
):
"""
Given a model and an input_string, returns the activation of the first
layer after each character.
"""
layer = model.layers[layer_i]
current_input_string = ''
activations = np.zeros((len(input_string), layer.units))
for i, char in enumerate(input_string):
current_input_string += char
x = np.zeros((1,) + model.input_shape[1:])
x[0, i, CHAR_TO_INDEX[char]] = 1
output = get_lstm_output(layer, x)
activations[i] = get_lstm_output(layer, x)[0]
return activations
def plot_weights(weights, labels=None):
"""
Given a matrix of weights and a list of labels, plots them in a heatmap.
If labels is a list of lists, will use each for a row in the plot.
"""
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.imshow(weights, vmin=-1., vmax=1., cmap='bwr', interpolation='nearest')
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
def annotate(label, x, y):
ax.annotate(label, (x, y), va='center', ha='center')
if labels and type(labels[0]) is list:
for label, y in zip(labels, range(weights.shape[0])):
for x, char_label in enumerate(label or []):
annotate(char_label, x, y)
else:
for x, label in enumerate(labels or []):
for y in range(weights.shape[0]):
annotate(label, x, y)
plt.show()
def plot_activations(
model, input_string, layer_i=0, weight_i=None,
):
"""
Given a model and an input_string, plots the activations of each neuron
in the first layer for each char.
"""
if weight_i is None:
weight_i = range(model.layers[layer_i].units)
if type(weight_i) is int:
weight_i = [weight_i]
activations = get_activations_char_by_char(
model, input_string, layer_i=layer_i,
)
weights = np.zeros((len(weight_i), len(input_string)))
labels = list(input_string.replace('\0', '\\0'))
for i, activation in enumerate(activations):
for j, wi in enumerate(weight_i):
weights[j, i] = activation[wi]
plot_weights(weights, labels)
def plot_activations_single_weights(
model, input_strings, weight_i, layer_i=0,
):
"""
Given a model, a list of input_strings and a weight index, plots the
activations of that neuron for each of the input strings.
"""
# TODO Finish this
if type(input_strings) is str:
input_strings = [input_strings]
max_len = max(len(input_string) for input_string in input_strings)
weights = np.zeros((len(input_strings), max_len))
labels = [
list(input_string.replace('\0', '\\0'))
for input_string in input_strings
]
for i, input_string in enumerate(input_strings):
activations = get_activations_char_by_char(
model, input_string, layer_i=layer_i,
)
weights[i] = activations[:, weight_i]
plot_weights(weights, labels)