Skip to content

Latest commit

 

History

History
85 lines (64 loc) · 2.88 KB

README.md

File metadata and controls

85 lines (64 loc) · 2.88 KB

Depth-aware CNN for RGB-D Segmentation [Arxiv]

This fork is compatible with PyTorch version 1.5.1. CUDA is required.

PyTorch 1.0 has a breaking change for how CUDA extensions are added. I reimplemented the whole CUDA kernel to make it work with 1.5.1 therefore there is no one-to-one corespondance with the functions in the original PyTorch 0.4 implementation.

I have added unit tests to verify that my implementation calculates the correct gradients. The unit tests comparing to PyTorch's default implementations of convolutions and average pooling to my Depth Aware implemenations. By using an input with the depth channel set to all ones, both implemenations should produce the same result. depthconv_unit_tests.py does not pass Due to precision errors, the weight gradients in the final layers of the VGG 16 network are only the same to 3 decimal places. I consider this to be an acceptable difference.

Installation

Dependancies:

Code snippet creates new conda environment and installs dependancies

conda create -n depthcnn python=3.8
conda activate depthcnn
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install tqdm scipy
pip install tensorboardX
pip install dominate
pip install opencv-python

Compile CUDA code

The depth-aware convolution and depth-aware average pooling operations are under folder models/ops/, to build them, simply use python setup.py install to compile.

cd depthaware/models/ops/depthconv/
python setup.py install

cd ../depthavgpooling/
python setup.py install

cd ../../../../

Finally, install the whole module

pip install -e .

Training

#!./scripts/train.sh
python train.py \
--name nyuv2_VGGdeeplab_depthconv \
--dataset_mode nyuv2 \
--flip --scale --crop --colorjitter \
--depthconv \
--list dataset/lists/nyuv2/train.lst \
--vallist dataset/lists/nyuv2/val.lst

Testing

#!./scripts/test.sh
python test.py \
--name nyuv2_VGGdeeplab_depthconv \
--dataset_mode nyuv2 \
--list dataset/lists/nyuv2/test.lst \
--depthconv \
--how_many 0

Citation

If you find this work useful, please consider citing the original paper:

    @inproceedings{wang2018depthconv,
        title={Depth-aware CNN for RGB-D Segmentation},
        author={Wang, Weiyue and Neumann, Ulrich},
        booktitle={ECCV},
        year={2018}
    }