diff --git a/opty/tests/test_direct_collocation.py b/opty/tests/test_direct_collocation.py index 73ce328..e849c55 100644 --- a/opty/tests/test_direct_collocation.py +++ b/opty/tests/test_direct_collocation.py @@ -1591,7 +1591,9 @@ def setup_method(self): self.interval_value = 0.01 self.free = np.array([1.0, 2.0, 3.0, 4.0, # x 5.0, 6.0, 7.0, 8.0, # v - 3.0]) # k + 2.0, 2.0, 2.0, 2.0, # f(t-tau) + 3.0, # k + 0.0]) #tau self.eom = sym.Matrix([x(t).diff() - v(t), m * v(t).diff() + c * v(t) + k * x(t) - f(t-tau)]) @@ -1782,23 +1784,17 @@ def test_gen_multi_arg_con_func_midpoint(self): expected = np.hstack((expected_kinematic, expected_dynamic)) np.testing.assert_allclose(result, expected) + - def test_gen_multi_arg_con_jac_func_backward_euler(self): + def test_generate_jacobian_function(self): - self.collocator._gen_multi_arg_con_jac_func() + jacobian = self.collocator.generate_jacobian_function() - # Make sure the parameters are in the correct order. - constant_values = \ - np.array([self.constant_values[self.constant_symbols.index(c)] - for c in self.collocator.parameters]) + jac_vals = jacobian(self.free) - # TODO : Once there are more than one specified, they will need to - # be put in the correct order too. + row_idxs, col_idxs = self.collocator.jacobian_indices() - jac_vals = self.collocator._multi_arg_con_jac_func(self.state_values, - self.specified_values, - constant_values, - self.interval_value) + jacobian_matrix = sparse.coo_matrix((jac_vals, (row_idxs, col_idxs))) row_idxs, col_idxs = self.collocator.jacobian_indices() @@ -1812,20 +1808,22 @@ def test_gen_multi_arg_con_jac_func_backward_euler(self): x = self.state_values[0] m, c, k = self.constant_values h = self.interval_value - c_tau = 1 + c_tau = 0 expected_jacobian = np.array( # x1, x2, x3, x4, v1, v2, v3, v4, f1, f2, f3, f4, k, tau - [[-1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], - [ 0, -1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0], - [ 0, 0, -1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], - [ 0, k, 0, 0, -m / h, c + m / h, 0, 0, 0, 0, 0, 0, x[1], 0], - [ 0, 0, k, 0, 0, -m / h, c + m / h, 0, 0, 0, 0, 0, x[2], 0], - [ 0, 0, 0, k, 0, 0, -m /h, c + m / h, 0, 0, 0, 0, x[3], 0], - [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, c_tau], - [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, c_tau], - [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, c_tau], - [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, c_tau]], + [[-1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], #eom-node 0 + [ 0, -1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0], #eom-node 1 + [ 0, 0, -1 / h, 1 / h, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], #eom-node 2 + [ 0, k, 0, 0, -m / h, c + m / h, 0, 0, 0, -1, 0, 0, x[1], 0], #eom-node 3 + [ 0, 0, k, 0, 0, -m / h, c + m / h, 0, 0, 0, -1, 0, x[2], 0], #eom-node 4 + [ 0, 0, 0, k, 0, 0, -m /h, c + m / h, 0, 0, 0, -1, x[3], 0], #eom-node 5 + [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], #c0: x[0] = 0 + [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], #c1: v[0] = 5 + [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, c_tau], #c_tshift_0 + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, c_tau], #c_tshift_1 + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, c_tau], #c_tshift_2 + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, c_tau]], #c_tshift_3 dtype=float) np.testing.assert_allclose(jacobian_matrix.todense(), expected_jacobian)