-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex2.agda
241 lines (205 loc) · 10.7 KB
/
ex2.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
module ex2 where
open import Data.Nat renaming (suc to S; zero to Z) hiding (_^_)
open import Data.Product hiding (Σ)
open import Relation.Binary.PropositionalEquality as PropEq
-- principal 2.29
open import BCoPL.Induction using (inductionℕ; cov-inductionℕ)
open import Data.Nat.Properties hiding (≤-trans; ≤-refl)
-- ex-2-2-0
Σ : ℕ → ℕ
Σ Z = Z
Σ (S n) = S n + Σ n
data Parity : ℕ → Set where
even : (k : ℕ) → Parity (k * 2)
odd : (k : ℕ) → Parity (1 + k * 2)
parity : (n : ℕ) → Parity n
parity Z = even Z
parity (S n) with parity n
parity (S .(k * 2)) | even k = odd k
parity (S .(S (k * 2))) | odd k = even (S k)
_/2 : ℕ → ℕ
n /2 with parity n
.(k * 2) /2 | even k = k
.(S (k * 2)) /2 | odd k = k
S[n/2]≡SSn/2 : (n : ℕ) → S (n /2) ≡ S (S n) /2
S[n/2]≡SSn/2 = inductionℕ (refl , help)
where
help : (n : ℕ) → S (n /2) ≡ S (S n) /2 → S (S n /2) ≡ S (S (S n)) /2
help n prf with parity n
help .(k * 2) prf | even k = refl
help .(S (k * 2)) prf | odd k = refl
x+y/2≡[x*2+y]/2 : (x y : ℕ) → x + y /2 ≡ (x * 2 + y) /2
x+y/2≡[x*2+y]/2 Z y = refl
x+y/2≡[x*2+y]/2 (S x) y rewrite x+y/2≡[x*2+y]/2 x y = S[n/2]≡SSn/2 (x * S (S Z) + y)
Σ≡n*Sn/2 : (n : ℕ) → Σ n ≡ (n * S n) /2
Σ≡n*Sn/2 = inductionℕ (refl , help)
where
x*y+x*z≡x*[y+z] : (x y z : ℕ) → x * y + x * z ≡ x * (y + z)
x*y+x*z≡x*[y+z] x y z rewrite *-comm x y | *-comm x z | *-comm x (y + z) = sym (*-distribʳ-+ x y z)
n*2+n*Sn≡n+n*SSn : (n : ℕ) → n * 2 + n * S n ≡ n + n * S (S n)
n*2+n*Sn≡n+n*SSn n rewrite sym (+-*-suc n (S (S n))) | x*y+x*z≡x*[y+z] n 2 (S n) = refl
[Sn+[n*Sn]/2]≡[SSn+n*SSn]/2 : (n : ℕ) → S n + ((n * S n) /2) ≡ S (S (n + n * S (S n))) /2
[Sn+[n*Sn]/2]≡[SSn+n*SSn]/2 n rewrite x+y/2≡[x*2+y]/2 (S n) (n * S n)
= cong (λ x → S (S x) /2) (n*2+n*Sn≡n+n*SSn n)
help : (n : ℕ) → Σ n ≡ (n * S n) /2 → S (n + Σ n) ≡ S (S (n + n * S (S n))) /2
help n prf rewrite prf = [Sn+[n*Sn]/2]≡[SSn+n*SSn]/2 n
-- ex-2-31
open import Data.Fin hiding (_+_; _≤_)
open import Data.Fin.Properties using (inject≤-lemma; to-from; toℕ-injective)
open import Data.Nat using (z≤n; s≤s)
open import Data.Nat.Properties using (m≤m+n)
data StampSheet : ℕ → Set where
tip : StampSheet 1
cut : {j k n : ℕ} → (p : j + k ≡ n) → StampSheet (S j) → StampSheet (S k) → StampSheet (S (S n))
count-of-cut : {n : ℕ} → StampSheet n → ℕ
count-of-cut tip = Z
count-of-cut (cut p sj sk) = 1 + count-of-cut sj + count-of-cut sk
count-of-cut-stampsheetSn≡n : (n : ℕ) → (s : StampSheet (S n)) → count-of-cut s ≡ n
count-of-cut-stampsheetSn≡n Z tip = refl
count-of-cut-stampsheetSn≡n (S n) (cut {j} {k} .{n} p sj sk) = cong S (help j k n p sj sk)
where
help : ∀ j k n →
j + k ≡ n →
(sj : StampSheet (S j)) (sk : StampSheet (S k)) →
count-of-cut sj + count-of-cut sk ≡ n
help j k n p sj sk rewrite count-of-cut-stampsheetSn≡n j sj | count-of-cut-stampsheetSn≡n k sk = p
count-of-cut-stampsheetSn≡n′ : (n : ℕ) → (s : StampSheet (S n)) → count-of-cut s ≡ n
count-of-cut-stampsheetSn≡n′ = cov-inductionℕ help
where
x+y≡k→x≤k : ∀ {x y k} → x + y ≡ k → x ≤ k
x+y≡k→x≤k p with sym p
x+y≡k→x≤k {x} {y} p | refl = m≤m+n x y
x+y≡k→y≤k : ∀ {x y k} → x + y ≡ k → y ≤ k
x+y≡k→y≤k {x} {y} p rewrite +-comm x y = x+y≡k→x≤k p
to-from-identity : ∀ j n → (j≤n : j ≤ n) → toℕ (inject≤ (fromℕ j) (s≤s j≤n)) ≡ j
to-from-identity Z k p = refl
to-from-identity (S j) Z ()
to-from-identity (S j) (S k) (s≤s p) = cong S (to-from-identity j k p)
help₃ : (j n : ℕ) → (j≤n : j ≤ n) → (s : StampSheet (S j)) → ∃ λ (j′ : Fin (S n)) → j ≡ toℕ j′
help₃ j n j≤n s = inject≤ (fromℕ j) (s≤s j≤n) , sym (to-from-identity j n j≤n)
help₂ : {n : ℕ} →
((j′ : Fin (S n)) → (s : StampSheet (S (toℕ j′))) → count-of-cut s ≡ toℕ j′) →
∀ j k → j + k ≡ n →
(sj : StampSheet (S j)) (sk : StampSheet (S k)) →
count-of-cut sj + count-of-cut sk ≡ n
help₂ {n} prf j k p sj sk with x+y≡k→x≤k {j} {k} {n} p
... | j≤n with inject≤ (fromℕ j) (s≤s j≤n)
... | j′ with help₃ j n j≤n sj
help₂ {n} prf .(toℕ j″) k p sj sk | j≤n | j′ | j″ , refl with x+y≡k→y≤k {toℕ j″} {k} {n} p
... | k≤n with inject≤ (fromℕ k) (s≤s k≤n)
... | k′ with help₃ k n k≤n sk
help₂ prf .(toℕ j″) .(toℕ k″) p sj sk | j≤n | j′ | j″ , refl | k≤n | k′ | k″ , refl rewrite prf j″ sj | prf k″ sk = p
help : (k : ℕ) → ((j : Fin k) (s : StampSheet (S (toℕ j))) → count-of-cut s ≡ toℕ j) →
(s : StampSheet (S k)) → count-of-cut s ≡ k
help Z prf tip = refl
help (S n) prf (cut {j} {k} .{n} p sj sk) = cong S (help₂ {n} prf j k p sj sk)
-- definition 2.34
plus : ℕ × ℕ → ℕ
plus (Z , y) = y
plus (S x , y) = S (plus (x , y))
-- definition 2.35
open import Data.Nat renaming (_⊔_ to max) hiding (_^_)
open import BCoPL.EvalNatExp
size : Exp → ℕ
size (Nat Z) = 1
size (Nat (S n)) = 1 + size (Nat n)
size (e₁ ⊕ e₂) = size e₁ + size e₂
size (e₁ ⊛ e₂) = size e₁ + size e₂
height : Exp → ℕ
height (Nat Z) = 1
height (Nat (S n)) = 1 + height (Nat n)
height (e₁ ⊕ e₂) = 1 + max (height e₁) (height e₂)
height (e₁ ⊛ e₂) = 1 + max (height e₁) (height e₂)
-- exercise 2.5
uniqueness-plus : ∀ {n₁ n₂ n₃ n₄} → plus (n₁ , n₂) ≡ n₃ × plus (n₁ , n₂) ≡ n₄ → n₃ ≡ n₄
uniqueness-plus (refl , refl) = refl
closure-plus : (n₁ n₂ : ℕ) → ∃ λ n₃ → plus (n₁ , n₂) ≡ n₃
closure-plus Z n₂ = n₂ , refl
closure-plus (S n₁) n₂ = S (plus (n₁ , n₂)) , refl
-- excercise 2.6
open import Data.Nat.Properties using (≤-steps; m≤m⊔n)
open import Relation.Binary
open DecTotalOrder ≤-decTotalOrder using () renaming (trans to ≤-trans; refl to ≤-refl)
open import Relation.Binary.PreorderReasoning using (begin_; _∎; _≈⟨_⟩_; _∼⟨_⟩_)
open import BCoPL.Induction using (induction-Exp)
{-
_^_ : ℕ → ℕ → ℕ
Z ^ Z = 1
Z ^ n = Z
x ^ Z = 1
x ^ S y = x * (x ^ y)
-}
size≥1 : ∀ e → 1 ≤ size e
size≥1 = induction-Exp help-nat help-plus help-times
where
help-nat : ∀ n → 1 ≤ size (Nat n)
help-nat Z = s≤s z≤n
help-nat (S n) = s≤s z≤n
help-plus : ∀ e₁ e₂ → (1 ≤ size e₁) × (1 ≤ size e₂) → 1 ≤ size e₁ + size e₂
help-plus e₁ e₂ (1≤size₁ , 1≤size₂) = ≤-stepsˡ (size e₁) 1≤size₂
help-times : ∀ e₁ e₂ → (1 ≤ size e₁) × (1 ≤ size e₂) → 1 ≤ size e₁ + size e₂
help-times e₁ e₂ (1≤size₁ , 1≤size₂) = ≤-stepsˡ (size e₁) 1≤size₂
height≥1 : ∀ e → 1 ≤ height e
height≥1 = induction-Exp help-nat help-plus help-times
where
help-nat : ∀ n → 1 ≤ height (Nat n)
help-nat Z = s≤s z≤n
help-nat (S n) = m≤m+n (S Z) (height (Nat n))
help-plus : ∀ e₁ e₂ → (1 ≤ height e₁) × (1 ≤ height e₂) → 1 ≤ 1 + max (height e₁) (height e₂)
help-plus e₁ e₂ prf = m≤m+n (S Z) (max (height e₁) (height e₂))
help-times : ∀ e₁ e₂ → (1 ≤ height e₁) × (1 ≤ height e₂) → 1 ≤ 1 + max (height e₁) (height e₂)
help-times e₁ e₂ prf = m≤m+n (S Z) (max (height e₁) (height e₂))
a≤b→c≤d→a+c≤b+d : ∀ {a b c d} → a ≤ b → c ≤ d → a + c ≤ b + d
a≤b→c≤d→a+c≤b+d {b = b} z≤n c≤d = ≤-stepsˡ b c≤d
a≤b→c≤d→a+c≤b+d (s≤s a≤b) c≤d = s≤s (a≤b→c≤d→a+c≤b+d a≤b c≤d)
Sx≤x+1 : ∀ x → S x ≤ x + 1
Sx≤x+1 Z = s≤s z≤n
Sx≤x+1 (S x) = s≤s (Sx≤x+1 x)
1≤2^heightN : ∀ n → 1 ≤ 2 ^ height (Nat n)
1≤2^heightN Z = s≤s z≤n
1≤2^heightN (S n) = ≤-trans (1≤2^heightN n) (m≤m+n (S (S Z) ^ height (Nat n)) (S (S Z) ^ height (Nat n) + Z))
1≤2^heightN+0 : ∀ n → 1 ≤ 2 ^ height (Nat n) + 0
1≤2^heightN+0 n = a≤b→c≤d→a+c≤b+d (1≤2^heightN n) z≤n
n≤n+m : ∀ n m → n ≤ n + m
n≤n+m Z m = z≤n
n≤n+m (S n) m = s≤s (n≤n+m n m)
1≤2^n : ∀ n → 1 ≤ 2 ^ n
1≤2^n Z = s≤s z≤n
1≤2^n (S n) = a≤b→c≤d→a+c≤b+d (1≤2^n n) z≤n
n≤m→2ⁿ≤2ᵐ : (n m : ℕ) → n ≤ m → 2 ^ n ≤ 2 ^ m
n≤m→2ⁿ≤2ᵐ Z Z z≤n = s≤s z≤n
n≤m→2ⁿ≤2ᵐ Z (S m) z≤n = a≤b→c≤d→a+c≤b+d (1≤2^n m) z≤n
n≤m→2ⁿ≤2ᵐ (S n) Z ()
n≤m→2ⁿ≤2ᵐ (S n) (S m) (s≤s p) = a≤b→c≤d→a+c≤b+d (n≤m→2ⁿ≤2ᵐ n m p) (a≤b→c≤d→a+c≤b+d (n≤m→2ⁿ≤2ᵐ n m p) z≤n)
m≤n⊔m : ∀ m n → m ≤ n ⊔ m
m≤n⊔m Z n = z≤n
m≤n⊔m (S m) Z = s≤s (m≤n⊔m m Z)
m≤n⊔m (S m) (S n) = s≤s (m≤n⊔m m n)
ex-2-6 : (e : Exp) → (size e) + 1 ≤ 2 ^ height e
ex-2-6 = induction-Exp help-nat help help
where
help-nat₂ : ∀ n → size (Nat n) + 1 ≤ 2 ^ height (Nat n) →
S (size (Nat n) + 1) ≤ 2 ^ height (Nat n) + (2 ^ height (Nat n) + 0)
help-nat₂ n prf = ≤-trans (Sx≤x+1 (size (Nat n) + 1)) (a≤b→c≤d→a+c≤b+d prf (1≤2^heightN+0 n))
help-nat : ∀ n → size (Nat n) + 1 ≤ 2 ^ height (Nat n)
help-nat = inductionℕ ((s≤s (s≤s z≤n)) , help-nat₂)
help : ∀ e₁ e₂ → (size e₁ + 1 ≤ 2 ^ height e₁) × (size e₂ + 1 ≤ 2 ^ height e₂) →
size e₁ + size e₂ + 1 ≤ 2 ^ (height e₁ ⊔ height e₂) + (2 ^ (height e₁ ⊔ height e₂) + 0)
help e₁ e₂ (p₁ , p₂) =
≤-trans ([a+b]+c≤a+[b+c] (size e₁) (size e₂) 1)
(≤-trans (a+b≤a+1+b (size e₁) (size e₂ + 1))
(≤-trans (a≤b→c≤d→a+c≤b+d p₁ p₂)
(a≤b→c≤d→a+c≤b+d
(2^x≤2^x⊔y (height e₁) (height e₂))
(≤-trans (2^y≤2^x⊔y (height e₁) (height e₂)) (n≤n+m (S (S Z) ^ (height e₁ ⊔ height e₂)) 0)))))
where
[a+b]+c≤a+[b+c] : ∀ a b c → (a + b) + c ≤ a + (b + c)
[a+b]+c≤a+[b+c] Z b c = ≤-refl
[a+b]+c≤a+[b+c] (S a) b c = s≤s ([a+b]+c≤a+[b+c] a b c)
a+b≤a+1+b : ∀ a b → a + b ≤ a + 1 + b
a+b≤a+1+b Z b = ≤-stepsˡ (S Z) ≤-refl
a+b≤a+1+b (S a) b = s≤s (a+b≤a+1+b a b)
2^x≤2^x⊔y : ∀ x y → 2 ^ x ≤ 2 ^ (x ⊔ y)
2^x≤2^x⊔y x y = n≤m→2ⁿ≤2ᵐ x (x ⊔ y) (m≤m⊔n x y)
2^y≤2^x⊔y : ∀ x y → 2 ^ y ≤ 2 ^ (x ⊔ y)
2^y≤2^x⊔y x y = n≤m→2ⁿ≤2ᵐ y (x ⊔ y) (m≤n⊔m y x)