-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathroi_pool_py.py
47 lines (40 loc) · 2.12 KB
/
roi_pool_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
class RoIPool(nn.Module):
def __init__(self, pooled_height, pooled_width, spatial_scale):
super(RoIPool, self).__init__()
self.pooled_width = int(pooled_width)
self.pooled_height = int(pooled_height)
self.spatial_scale = float(spatial_scale)
def forward(self, features, rois):
batch_size, num_channels, data_height, data_width = features.size()
num_rois = rois.size()[0]
outputs = Variable(torch.zeros(num_rois, num_channels, self.pooled_height, self.pooled_width)).cuda()
for roi_ind, roi in enumerate(rois):
batch_ind = int(roi[0].data[0])
roi_start_w, roi_start_h, roi_end_w, roi_end_h = np.round(
roi[1:].data.cpu().numpy() * self.spatial_scale).astype(int)
roi_width = max(roi_end_w - roi_start_w + 1, 1)
roi_height = max(roi_end_h - roi_start_h + 1, 1)
bin_size_w = float(roi_width) / float(self.pooled_width)
bin_size_h = float(roi_height) / float(self.pooled_height)
for ph in range(self.pooled_height):
hstart = int(np.floor(ph * bin_size_h))
hend = int(np.ceil((ph + 1) * bin_size_h))
hstart = min(data_height, max(0, hstart + roi_start_h))
hend = min(data_height, max(0, hend + roi_start_h))
for pw in range(self.pooled_width):
wstart = int(np.floor(pw * bin_size_w))
wend = int(np.ceil((pw + 1) * bin_size_w))
wstart = min(data_width, max(0, wstart + roi_start_w))
wend = min(data_width, max(0, wend + roi_start_w))
is_empty = (hend <= hstart) or(wend <= wstart)
if is_empty:
outputs[roi_ind, :, ph, pw] = 0
else:
data = features[batch_ind]
outputs[roi_ind, :, ph, pw] = torch.max(
torch.max(data[:, hstart:hend, wstart:wend], 1)[0], 2)[0].view(-1)
return outputs