-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
80 lines (64 loc) · 2.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import numpy as np
import staintools
from skimage.measure import label, regionprops
def stain_norm_func(target_image_path):
target = staintools.read_image(target_image_path)
target = staintools.LuminosityStandardizer.standardize(target)
normalizer = staintools.StainNormalizer(method='vahadane')
normalizer.fit(target)
return normalizer
def stain_patch_dir(PATCHES_DIR, slide_pathes):
phase = 'train'
stain_patches_save_path = PATCHES_DIR + 'train/'
if len(slide_pathes) < 110 :
phase = 'test1'
stain_patches_save_path = PATCHES_DIR + 'test1/'
elif len(slide_pathes) < 200 :
phase = 'test2'
stain_patches_save_path = PATCHES_DIR + 'test2/'
make_directory(stain_patches_save_path)
print('current phase : ',phase)
return stain_patches_save_path, phase
def set_directory(CKPT_DIR, MODEL_NAME):
path1, path2 = os.path.split(CKPT_DIR[:-1])
if not os.path.isdir(path1):
os.mkdir(path1)
if not os.path.isdir(CKPT_DIR):
os.mkdir(CKPT_DIR)
if not os.path.isdir(CKPT_DIR + MODEL_NAME):
os.mkdir(CKPT_DIR + MODEL_NAME)
print('Set Directory')
def get_major_axis(mask):
from skimage.measure import label, regionprops
# divide entire masks into each instance using connected-components labelling
labels = label(mask)
# iterate to calculate the length of the major axis of each instance
major_axis_list = [regionprops((labels == i).astype('uint8'))[0].major_axis_length \
for i in np.unique(labels) if i != 0]
# find the longest major axis
if len(major_axis_list):
longest_major_axis = max(major_axis_list)
else:
longest_major_axis = 0
return longest_major_axis
def predict_from_model(patch, model):
"""Predict which pixels are tumor.
input: patch: 256x256x3, rgb image
input: model: keras model
output: prediction: 256x256x1, per-pixel tumor probability
"""
prediction = model.predict(patch.reshape(1, 256, 256, 3))
prediction = prediction.reshape(256, 256)
return prediction
def make_directory(DIR):
if not os.path.isdir(DIR):
os.mkdir(DIR)
print(DIR,'made!')
def acc_score(truth, pred):
cnt = 0
for i in range(len(truth)):
diff = np.abs(truth[i] - pred[i])
if diff <= truth[i]*0.05 :
cnt += 1
return cnt / len(truth)