-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtrain.py
132 lines (100 loc) · 5.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from tqdm import tqdm
import pandas as pd
import tensorflow as tf
from attention_dynamic_model import set_decode_type
from reinforce_baseline import validate
from utils import generate_data_onfly, get_results, get_cur_time
from time import gmtime, strftime
def train_model(optimizer,
model_tf,
baseline,
validation_dataset,
samples = 1280000,
batch = 128,
val_batch_size = 1000,
start_epoch = 0,
end_epoch = 5,
from_checkpoint = False,
grad_norm_clipping = 1.0,
batch_verbose = 1000,
graph_size = 20,
filename = None
):
if filename is None:
filename = 'VRP_{}_{}'.format(graph_size, strftime("%Y-%m-%d", gmtime()))
def rein_loss(model, inputs, baseline, num_batch):
"""Calculate loss for REINFORCE algorithm
"""
# Evaluate model, get costs and log probabilities
cost, log_likelihood = model(inputs)
# Evaluate baseline
# For first wp_n_epochs we take the combination of baseline and ema for previous batches
# after that we take a slice of precomputed baseline values
bl_val = bl_vals[num_batch] if bl_vals is not None else baseline.eval(inputs, cost)
bl_val = tf.stop_gradient(bl_val)
# Calculate loss
reinforce_loss = tf.reduce_mean((cost - bl_val) * log_likelihood)
return reinforce_loss, tf.reduce_mean(cost)
def grad(model, inputs, baseline, num_batch):
"""Calculate gradients
"""
with tf.GradientTape() as tape:
loss, cost = rein_loss(model, inputs, baseline, num_batch)
return loss, cost, tape.gradient(loss, model.trainable_variables)
# For plotting
train_loss_results = []
train_cost_results = []
val_cost_avg = []
# Training loop
for epoch in range(start_epoch, end_epoch):
# Create dataset on current epoch
data = generate_data_onfly(num_samples=samples, graph_size=graph_size)
epoch_loss_avg = tf.keras.metrics.Mean()
epoch_cost_avg = tf.keras.metrics.Mean()
# Skip warm-up stage when we continue training from checkpoint
if from_checkpoint and baseline.alpha != 1.0:
print('Skipping warm-up mode')
baseline.alpha = 1.0
# If epoch > wp_n_epochs then precompute baseline values for the whole dataset else None
bl_vals = baseline.eval_all(data) # (samples, ) or None
bl_vals = tf.reshape(bl_vals, (-1, batch)) if bl_vals is not None else None # (n_batches, batch) or None
print("Current decode type: {}".format(model_tf.decode_type))
for num_batch, x_batch in tqdm(enumerate(data.batch(batch)), desc="batch calculation at epoch {}".format(epoch)):
# Optimize the model
loss_value, cost_val, grads = grad(model_tf, x_batch, baseline, num_batch)
# Clip gradients by grad_norm_clipping
init_global_norm = tf.linalg.global_norm(grads)
grads, _ = tf.clip_by_global_norm(grads, grad_norm_clipping)
global_norm = tf.linalg.global_norm(grads)
if num_batch%batch_verbose == 0:
print("grad_global_norm = {}, clipped_norm = {}".format(init_global_norm.numpy(), global_norm.numpy()))
optimizer.apply_gradients(zip(grads, model_tf.trainable_variables))
# Track progress
epoch_loss_avg.update_state(loss_value)
epoch_cost_avg.update_state(cost_val)
if num_batch%batch_verbose == 0:
print("Epoch {} (batch = {}): Loss: {}: Cost: {}".format(epoch, num_batch, epoch_loss_avg.result(), epoch_cost_avg.result()))
# Update baseline if the candidate model is good enough. In this case also create new baseline dataset
baseline.epoch_callback(model_tf, epoch)
set_decode_type(model_tf, "sampling")
# Save model weights
model_tf.save_weights('model_checkpoint_epoch_{}_{}.h5'.format(epoch, filename), save_format='h5')
# Validate current model
val_cost = validate(validation_dataset, model_tf, val_batch_size)
val_cost_avg.append(val_cost)
train_loss_results.append(epoch_loss_avg.result())
train_cost_results.append(epoch_cost_avg.result())
pd.DataFrame(data={'epochs': list(range(start_epoch, epoch+1)),
'train_loss': [x.numpy() for x in train_loss_results],
'train_cost': [x.numpy() for x in train_cost_results],
'val_cost': [x.numpy() for x in val_cost_avg]
}).to_csv('backup_results_' + filename + '.csv', index=False)
print(get_cur_time(), "Epoch {}: Loss: {}: Cost: {}".format(epoch, epoch_loss_avg.result(), epoch_cost_avg.result()))
# Make plots and save results
filename_for_results = filename + '_start={}, end={}'.format(start_epoch, end_epoch)
get_results([x.numpy() for x in train_loss_results],
[x.numpy() for x in train_cost_results],
[x.numpy() for x in val_cost_avg],
save_results=True,
filename=filename_for_results,
plots=True)