This example illustrates how to use Morpheus to automatically detect abnormal behavior in NVIDIA SMI logs by utilizing a Forest Inference Library (FIL) model and Triton Inference Server. The particular behavior we will be searching for is cryptocurrency mining.
Environment | Supported | Notes |
---|---|---|
Conda | ✔ | |
Morpheus Docker Container | ✔ | Requires launching Triton on the host |
Morpheus Release Container | ✔ | Requires launching Triton on the host |
Dev Container | ✔ | Requires using the dev-triton-start script and replacing --server_url=localhost:8000 with --server_url=triton:8000 |
The goal of this example is to identify whether or not a monitored NVIDIA GPU is actively mining for cryptocurrencies and take corrective action if detected. Cryptocurrency mining can be a large resource drain on GPU clusters and detecting mining can be difficult since mining workloads appear similar to other valid workloads.
In this example, we will be using Morpheus' provided ABP NVSMI Detection model. This model is capable of detecting the signature of cryptocurrency mining from the output of nvidia-smi
logs. For each timestamp that nvidia-smi
log data is available, the model will output a single probability indicating whether mining was detected or not.
The dataset that this workflow was designed to process contains NVIDIA GPU metrics at regular time intervals and is extracted by a NetQ agent and serialized into JSON. Each line in the dataset contains much of the same information that is returned by the nvidia-smi
utility. We won't examine at a full message directly since each line contains 176 different columns, but it's possible to get an idea of how the dataset was generated using the nvidia-smi dmon
command. If you run this yourself, the output similar to the following:
$ nvidia-smi dmon
# gpu pwr gtemp mtemp sm mem enc dec mclk pclk
# Idx W C C % % % % MHz MHz
0 70 48 - 5 1 0 0 7000 1350
0 68 48 - 11 1 0 0 7000 1350
0 69 48 - 3 1 0 0 7000 1350
0 270 53 - 10 1 0 0 7000 1875
0 274 55 - 75 46 0 0 7000 1740
0 278 55 - 86 56 0 0 7000 1755
0 279 56 - 99 63 0 0 7000 1755
0 277 57 - 86 55 0 0 7000 1755
0 281 57 - 85 54 0 0 7000 1740
Each line in the output represents the GPU metrics at a single point in time. As the tool progresses the GPU begins to be utilized and the SM% and Mem% values increase as memory is loaded into the GPU and computations are performed. The model we will be using can ingest this information and determine whether or not the GPU is mining cryptocurrencies without needing additional information from the host machine.
In this example we will be using the examples/data/nvsmi.jsonlines
dataset that is known to contain mining behavior profiles. The dataset is in the .jsonlines
format which means each new line represents a new JSON object. In order to parse this data, it must be ingested, split by lines into individual JSON objects, and parsed into cuDF DataFrames. This will all be handled by Morpheus.
This example can be easily applied to datasets generated from your own NVIDIA GPU devices. If NetQ is not deployed in your environment, the nvsmi_data_extract.py
script is provided which uses pyNVML and pandas to generate data similar to NetQ. pyNVML
contains the Python bindings for NVIDIA Management Library (NVML), the same library used by nvidia-smi
.
pyNVML is not installed by default, use the following command to install it:
conda env update --solver=libmamba -n morpheus --file conda/environments/examples_cuda-125_arch-$(arch).yaml
Run the following to start generating your dataset:
python nvsmi_data_extract.py
This will write a new entry to an output file named nvsmi.jsonlines
once per second until you press Ctrl+C to exit.
The pipeline we will be using in this example is a simple feed-forward linear pipeline where the data from each stage flows on to the next. Simple linear pipelines with no custom stages, like this example, can be configured via the Morpheus CLI or using the Python library. In this example we will be using the Morpheus CLI.
Below is a visualization of the pipeline showing all of the stages and data types as it flows from one stage to the next.
This example utilizes the Triton Inference Server to perform inference.
Pull the Docker image for Triton:
docker pull nvcr.io/nvidia/morpheus/morpheus-tritonserver-models:25.02
Run the following to launch Triton and load the abp-nvsmi-xgb
XGBoost model:
docker run --rm -ti --gpus=all -p8000:8000 -p8001:8001 -p8002:8002 nvcr.io/nvidia/morpheus/morpheus-tritonserver-models:25.02 tritonserver --model-repository=/models/triton-model-repo --exit-on-error=false --model-control-mode=explicit --load-model abp-nvsmi-xgb
This will launch Triton and only load the abp-nvsmi-xgb
model. This model has been configured with a max batch size of 32768, and to use dynamic batching for increased performance.
Once Triton has loaded the model, the following will be displayed:
+-------------------+---------+--------+
| Model | Version | Status |
+-------------------+---------+--------+
| abp-nvsmi-xgb | 1 | READY |
+-------------------+---------+--------+
Note: If this is not present in the output, check the Triton log for any error messages related to loading the model.
With the Morpheus CLI, an entire pipeline can be configured and run without writing any code. Using the morpheus run pipeline-fil
command, we can build the pipeline by specifying each stage's name and configuration right on the command line. The output of each stage will become the input for the next.
The following command line is the entire command to build and launch the pipeline. Each new line represents a new stage. The comment above each stage gives information about why the stage was added and configured this way (you can copy/paste the entire command with comments).
From the Morpheus repo root directory, run:
# Launch Morpheus printing debug messages
morpheus --log_level=DEBUG \
`# Run a pipeline with 8 threads and a model batch size of 1024 (Must be equal or less than Triton config)` \
run --num_threads=8 --pipeline_batch_size=1024 --model_max_batch_size=1024 \
`# Specify a NLP pipeline with 256 sequence length (Must match Triton config)` \
pipeline-fil --columns_file=data/columns_fil.txt \
`# 1st Stage: Read from file` \
from-file --filename=examples/data/nvsmi.jsonlines \
`# 2nd Stage: Deserialize batch DataFrame into ControlMessages` \
deserialize \
`# 3rd Stage: Preprocessing converts the input data into BERT tokens` \
preprocess \
`# 4th Stage: Send messages to Triton for inference. Specify the model loaded in Setup` \
inf-triton --model_name=abp-nvsmi-xgb --server_url=localhost:8000 \
`# 5th Stage: Monitor stage prints throughput information to the console` \
monitor --description "Inference Rate" --smoothing=0.001 --unit inf \
`# 6th Stage: Add results from inference to the messages` \
add-class \
`# 7th Stage: Convert from objects back into strings. Ignore verbose input data` \
serialize --include 'mining' \
`# 8th Stage: Write out the JSON lines to the detections.jsonlines file` \
to-file --filename=.tmp/output/abp_nvsmi_detections.jsonlines --overwrite
If successful, the following should be displayed:
Configuring Pipeline via CLI
Loaded columns. Current columns: [['nvidia_smi_log.gpu.fb_memory_usage.used', 'nvidia_smi_log.gpu.fb_memory_usage.free', 'nvidia_smi_log.gpu.utilization.gpu_util', 'nvidia_smi_log.gpu.utilization.memory_util', 'nvidia_smi_log.gpu.temperature.gpu_temp', 'nvidia_smi_log.gpu.temperature.gpu_temp_max_threshold', 'nvidia_smi_log.gpu.temperature.gpu_temp_slow_threshold', 'nvidia_smi_log.gpu.power_readings.power_draw', 'nvidia_smi_log.gpu.clocks.graphics_clock', 'nvidia_smi_log.gpu.clocks.sm_clock', 'nvidia_smi_log.gpu.clocks.mem_clock', 'nvidia_smi_log.gpu.applications_clocks.graphics_clock', 'nvidia_smi_log.gpu.applications_clocks.mem_clock', 'nvidia_smi_log.gpu.default_applications_clocks.graphics_clock', 'nvidia_smi_log.gpu.default_applications_clocks.mem_clock', 'nvidia_smi_log.gpu.max_clocks.graphics_clock', 'nvidia_smi_log.gpu.max_clocks.sm_clock', 'nvidia_smi_log.gpu.max_clocks.mem_clock']]
Starting pipeline via CLI... Ctrl+C to Quit
Config:
{
"ae": null,
"class_labels": [
"mining"
],
"debug": false,
"edge_buffer_size": 128,
"feature_length": 18,
"fil": {
"feature_columns": [
"nvidia_smi_log.gpu.pci.tx_util",
"nvidia_smi_log.gpu.pci.rx_util",
"nvidia_smi_log.gpu.fb_memory_usage.used",
"nvidia_smi_log.gpu.fb_memory_usage.free",
"nvidia_smi_log.gpu.bar1_memory_usage.total",
"nvidia_smi_log.gpu.bar1_memory_usage.used",
"nvidia_smi_log.gpu.bar1_memory_usage.free",
"nvidia_smi_log.gpu.utilization.gpu_util",
"nvidia_smi_log.gpu.utilization.memory_util",
"nvidia_smi_log.gpu.temperature.gpu_temp",
"nvidia_smi_log.gpu.temperature.gpu_temp_max_threshold",
"nvidia_smi_log.gpu.temperature.gpu_temp_slow_threshold",
"nvidia_smi_log.gpu.temperature.gpu_temp_max_gpu_threshold",
"nvidia_smi_log.gpu.temperature.memory_temp",
"nvidia_smi_log.gpu.temperature.gpu_temp_max_mem_threshold",
"nvidia_smi_log.gpu.power_readings.power_draw",
"nvidia_smi_log.gpu.clocks.graphics_clock",
"nvidia_smi_log.gpu.clocks.sm_clock",
"nvidia_smi_log.gpu.clocks.mem_clock",
"nvidia_smi_log.gpu.clocks.video_clock",
"nvidia_smi_log.gpu.applications_clocks.graphics_clock",
"nvidia_smi_log.gpu.applications_clocks.mem_clock",
"nvidia_smi_log.gpu.default_applications_clocks.graphics_clock",
"nvidia_smi_log.gpu.default_applications_clocks.mem_clock",
"nvidia_smi_log.gpu.max_clocks.graphics_clock",
"nvidia_smi_log.gpu.max_clocks.sm_clock",
"nvidia_smi_log.gpu.max_clocks.mem_clock",
"nvidia_smi_log.gpu.max_clocks.video_clock",
"nvidia_smi_log.gpu.max_customer_boost_clocks.graphics_clock"
]
},
"log_config_file": null,
"log_level": 10,
"mode": "FIL",
"model_max_batch_size": 1024,
"num_threads": 8,
"pipeline_batch_size": 1024
}
CPP Enabled: True
====Registering Pipeline====
====Registering Pipeline Complete!====
====Starting Pipeline====
====Pipeline Started====
====Building Pipeline====
Added source: <from-file-0; FileSourceStage(filename=examples/data/nvsmi.jsonlines, iterative=False, file_type=FileTypes.Auto, repeat=1, filter_null=True)>
└─> morpheus.MessageMeta
Added stage: <deserialize-1; DeserializeStage()>
└─ morpheus.MessageMeta -> morpheus.ControlMessage
Added stage: <preprocess-fil-2; PreprocessFILStage()>
└─ morpheus.ControlMessage -> morpheus.ControlMessage
Added stage: <inference-3; TritonInferenceStage(model_name=abp-nvsmi-xgb, server_url=localhost:8000, force_convert_inputs=False, use_shared_memory=False)>
└─ morpheus.ControlMessage -> morpheus.ControlMessage
Added stage: <monitor-4; MonitorStage(description=Inference Rate, smoothing=0.001, unit=inf, delayed_start=False, determine_count_fn=None)>
└─ morpheus.ControlMessage -> morpheus.ControlMessage
Added stage: <add-class-5; AddClassificationsStage(threshold=0.5, labels=[], prefix=)>
└─ morpheus.ControlMessage -> morpheus.ControlMessage
Added stage: <serialize-6; SerializeStage(include=['mining'], exclude=['^ID$', '^_ts_'], fixed_columns=True)>
└─ morpheus.ControlMessage -> morpheus.MessageMeta
Added stage: <to-file-7; WriteToFileStage(filename=.tmp/output/abp_nvsmi_detections.jsonlines, overwrite=True, file_type=FileTypes.Auto)>
└─ morpheus.MessageMeta -> morpheus.MessageMeta
====Building Pipeline Complete!====
Starting! Time: 1656353254.9919598
Inference Rate[Complete]: 1242inf [00:00, 1863.04inf/s]
====Pipeline Complete====
The output file .tmp/output/detections.jsonlines
will contain a single boolean value for each input line. At some point the values will switch from 0
to 1
:
...
{"mining": 0}
{"mining": 0}
{"mining": 0}
{"mining": 0}
{"mining": 1}
{"mining": 1}
{"mining": 1}
{"mining": 1}
{"mining": 1}
{"mining": 1}
{"mining": 1}
{"mining": 1}
...
We have stripped out the input data to make the detections easier to identify. Omitting the argument --include 'mining'
would show the input data in the detections file.