-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb009applyHeuristicsOnMC.py
693 lines (637 loc) · 38.6 KB
/
b009applyHeuristicsOnMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#!/usr/bin/python
# -*- coding:utf-8 -*-
import sys, argparse, time, json
sys.path.append(u'../utils')
sys.path.append(u'./utils')
import utilsOs, utilsString
import b000path
from b003heuristics import *
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument(u'-c', u'--corpus', type=str,
default=u'NOT-FLAGGED',
help=u'corpus where to apply the heuristic : ALIGNMENT-QUALITY, MISALIGNED, QUALITY, NOT-FLAGGED')
parser.add_argument(u'-heur', u'--heuristic', type=str,
default=u'all',
help=u'corpus where to apply the heuristic')
parser.add_argument(u'-n', u'--nhours', type=int,
default=12,
help=u'how many hours to apply the heuristics and dumpt the scores with the not-flagged corpus')
parser.add_argument(u'-ap', u'--apply', type=bool,
default=False,
help=u'applies or not the heuristics')
parser.add_argument(u'-li', u'--listIds', type=str,
default=u'none',
help=u'list of the ids where we must apply the heuristics for the no-flagged corpus, i.e.: octal06')
parser.add_argument(u'-w', u'--wait', type=int,
default=0,
help=u'time to wait before launching the heuristics')
args = parser.parse_args()
def getRightCorpus(corpusString):
if corpusString == u'all':
corpus = [u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY', u'NOT-FLAGGED']
elif corpusString == u'p' or args.corpus == u'probl':
corpus = [u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY']
elif corpusString == u'nf' or args.corpus == u'np' or args.corpus == u'n':
corpus = [u'NOT-FLAGGED']
elif corpusString == u'aq' or args.corpus == u'qa':
corpus = [u'ALIGNMENT-QUALITY']
elif corpusString == u'q':
corpus = [u'QUALITY']
elif corpusString == u'm' or args.corpus == u'a':
corpus = [u'MISALIGNED']
else:
corpus = [corpusString]
return corpus
def getRightHeuristic(heuristicString):
if heuristicString == u'all':
corpus = [u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'strBcks', u'punct',
u'gibb', u'tabl']
else:
corpus = heuristicString.split(u'*')
return corpus
def getFilePathsLists(folderPaths=[u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY', u'NOT-FLAGGED']):
""" """
finalList = []
for folder in folderPaths:
refPathsList = b000path.getBtFilePaths(folders=[folder], fileFormat=u'tmx')
finalList += refPathsList
return finalList
def getLines(i, enLinesList, frLinesList, tmxPath):
enLn = enLinesList[i]
frLn = frLinesList[i]
srcLn = enLn if u'en-fr' in tmxPath else frLn
trgtLn = frLn if u'en-fr' in tmxPath else enLn
return srcLn, trgtLn, enLn, frLn
def getFlag(tmxPath):
for flag in [u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY', u'NOT-FLAGGED']:
if flag in tmxPath:
return flag
def getLnToWrite(heurName, srcLn, trgtLn, enLn, frLn,
placeInDocument=None, stopWordsEnFrDict=None, enLex=None, frLex=None, fauxAmisEn=None,
fauxAmisFr=None, starbucksExprDict=None, starbucksWordDict=None):
# nb match heuristic
if heurName == u'nb':
score, totalIntersect, totalSrc, totalTrgt = nbMismatch(srcLn, trgtLn, includeNumberNames=False, addInfo=True)
scAb, ttInterAb, ttSrcAb, ttTrgtAb = nbMismatch(srcLn, trgtLn, includeNumberNames=True, addInfo=True)
scAb = u'na' if scAb is None else scAb
# cognate match heuristic
elif heurName == u'cog':
score, totalIntersect, totalSrc, totalTrgt = cognateCoincidence(srcLn, trgtLn, addInfo=True)
# tok length heuristic
elif heurName == u'len':
score, totalIntersect, totalSrc, totalTrgt = compareLengths(srcLn, trgtLn, addInfo=True, onlyLongSentOfNPlusLen=10)
scCh, ttInterCh, ttSrcCh, ttTrgtCh = compareLengths(srcLn, trgtLn, useCharInsteadOfTokens=True, addInfo=True)
scCh = u'na' if scCh is None else scCh
# faux amis heuristic
elif heurName == u'fa':
score, totalIntersect, totalSrc, totalTrgt = fauxAmis(enLn, frLn, addInfo=True,
fauxAmisEn=fauxAmisEn, fauxAmisFr=fauxAmisFr)
# ion suffix heuristic
elif heurName == u'ion':
score, totalSrc, totalTrgt = ionSuffixMismatch(srcLn, trgtLn, addInfo=True)
# stop words heuristic
elif heurName == u'sw':
score, totalSrc, totalTrgt = stopWordsMismatch(enLn, frLn, addInfo=True, stopWordsEnFrDict=stopWordsEnFrDict)
# spelling check heuristic
elif heurName == u'spell':
score, totalElSrc, totalElTrgt, totalSrc, totalTrgt = spellingCheck(enLn, frLn, addInfo=True,
enLexicon=enLex, frLexicon=frLex)
# url and folder paths detector heuristic
elif heurName == u'url':
score, totalElSrc, totalElTrgt, totalSrc, totalTrgt = urlMismatch(srcLn, trgtLn, addInfo=True)
# monolinguistic presence heuristic
elif heurName == u'mono':
score, totalElSrc, totalElTrgt, totalSrc, totalTrgt = monoling(srcLn, trgtLn, addInfo=True)
# content table heuristic
elif heurName == u'tabl':
score, totalElSrc, totalElTrgt, totalSrc, totalTrgt = tableOfContentsMismatch(srcLn, trgtLn, addInfo=True)
# content table heuristic
elif heurName == u'gibb':
score, totalElSrc, totalElTrgt, totalSrc, totalTrgt = gibberish(srcLn, trgtLn, addInfo=True)
# starbucks word by word translation
elif heurName == u'strBcks':
score, totalSrc, totalTrgt = starbucksTranslationMismatch(enLn, frLn, addInfo=True,
starbucksExprDict=starbucksExprDict,
starbucksWordDict=starbucksWordDict)
# punctuation and symbol heuristic
elif heurName == u'punct':
score, totalIntersect, totalSrc, totalTrgt = punctAndSymb(srcLn, trgtLn, addInfo=True)
else:
raise TypeError('wrong heuristic code name given in the argument')
# get the silence
score = u'na' if score is None else score
# dump to files
if heurName == u'nb':
return u'{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\n'.format(score, scAb, totalIntersect, totalSrc, totalTrgt,
ttInterAb, ttSrcAb, ttTrgtAb)
elif heurName in [u'len']:
return (u'{0}\t{1}\t{2}\t{3}\t{4}\t{5}\n'.format(score, scCh, totalSrc,
totalTrgt, ttSrcCh, ttTrgtCh))
elif heurName in [u'mono', u'spell', u'tabl', u'url', u'gibb']:
return u'{0}\t{1}\t{2}\t{3}\t{4}\n'.format(score, totalElSrc, totalElTrgt, totalSrc, totalTrgt)
elif heurName in [u'sw', u'ion', u'strBcks']:
return u'{0}\t{1}\t{2}\n'.format(score, totalSrc, totalTrgt)
else:
return u'{0}\t{1}\t{2}\t{3}\n'.format(score, totalIntersect, totalSrc, totalTrgt)
def applyHeuristicOnCorpus(corpus=None, heuristic=None, out=None):
""" given a corpus and heuristic indication, it applies the heuristic to that corpus and dumps the result """
if corpus is None:
corpus = [u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY']
if heuristic is None:
heuristic = [u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'tabl', u'strBcks',
u'punct', u'gibb']
if out is None:
out = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/'
# get the heuristic needed objects
starbucksExprDict, starbucksWordDict = utilsString.openEn2FrStarbucksDict()
fauxAmisEn = utilsString.openFauxAmisDict(enToFr=True, withDescription=False, reducedVersion=True)
fauxAmisFr = utilsString.openFauxAmisDict(enToFr=False, withDescription=False, reducedVersion=True)
stopWordsEnFrDict = utilsString.openEn2FrStopWordsDict()
enLexicon = utilsString.getWiki1000MostCommonLexicon(u'en')
frLexicon = utilsString.getWiki1000MostCommonLexicon(u'fr')
# get the file paths and get sure we don't take into account the file we have already seen
filePathList = getFilePathsLists(corpus)
# start anew by erasing the previous files for the reference and scores
for flag in corpus:
# make the folder
utilsOs.createEmptyFolder(u'{0}{1}/'.format(out, flag))
outputRefPath = u'{0}{1}/reference.tsv'.format(out, flag)
# erase content of previous reference file
with open(outputRefPath, u'w') as refFile:
refFile.write(u'')
# erase content of previous score file
for heurName in heuristic:
# make the folder
utilsOs.createEmptyFolder(u'{0}{1}/{2}/'.format(out, flag, heurName))
# make the output files
outputScorePath = u'{0}{1}/{2}/score.tsv'.format(out, flag, heurName)
with open(outputScorePath, u'w') as scoreFile:
scoreFile.write(u'')
# for each file in the list
for tmxFilePath in tqdm(filePathList):
flag = getFlag(tmxFilePath)
# get the list of lines
with open(u'{0}.en'.format(tmxFilePath)) as enFile:
enLines = enFile.readlines()
with open(u'{0}.fr'.format(tmxFilePath)) as frFile:
frLines = frFile.readlines()
# get each line
for i in range(len(enLines)):
srcLn, trgtLn, enLn, frLn = getLines(i, enLines, frLines, tmxFilePath)
outputRefPath = u'{0}{1}/reference.tsv'.format(out, flag)
# append to the file
with open(outputRefPath, u'a') as refFile:
# apply the heuristics
for heurName in heuristic:
# make the output files
outputScorePath = u'{0}{1}/{2}/score.tsv'.format(out, flag, heurName)
# append to the score files
with open(outputScorePath, u'a') as scoreFile:
scoreFile.write(getLnToWrite(heurName, srcLn, trgtLn, enLn, frLn,
placeInDocument=float(i)/float(len(enLines)),
starbucksExprDict=starbucksExprDict,
starbucksWordDict=starbucksWordDict,
fauxAmisEn=fauxAmisEn, fauxAmisFr=fauxAmisFr,
stopWordsEnFrDict=stopWordsEnFrDict,
enLex=enLexicon, frLex=frLexicon))
# dump to ref file
refFile.write(u'{0}\t{1}\n'.format(b000path.anonymizePath(tmxFilePath), i))
return None
def saveNotFlaggedList():
# save the files path list in an external file
filePathList = getFilePathsLists([u'NOT-FLAGGED'])
filePathList = [b000path.anonymizePath(p) for p in filePathList]
utilsOs.dumpRawLines(filePathList,
u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/files.paths')
return None
def getSubsetOfFiles(filesIndexes):
subSet = []
indexes = []
ci = 0
with open(u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/files.paths') as setFile:
ln = setFile.readline().replace(u'\n', u'')
while ln:
if ci in filesIndexes:
subSet.append(ln)
indexes.append(ci)
# next line
ln = setFile.readline().replace(u'\n', u'')
ci += 1
return subSet, indexes
def rewriteFileIfExists(path):
# remove the file if it already exists
if utilsOs.theFileExists(path) is True:
with open(path, u'w') as file:
file.write(u'')
def applyHeuristicsOnNotFlaggedCorpus(filesIndexes, launchId, heuristicsList=None):
""" given a corpus and heuristic indication, it applies the heuristic to that corpus and dumps the result """
out = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/{0}/'.format(launchId)
if heuristicsList is None:
heuristicsList = [u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'tabl',
u'strBcks', u'punct', u'gibb']
starbucksExprDict, starbucksWordDict = utilsString.openEn2FrStarbucksDict()
# make the folder
utilsOs.createEmptyFolder(out)
# reference file
outputRefPath = u'{0}reference.tsv'.format(out)
referenceAlreadyExists = utilsOs.theFileExists(outputRefPath)
# get the list of ALL the file paths
filePathList, subsetIndexes = getSubsetOfFiles(filesIndexes)
# open the reference files
with open(outputRefPath, u'a') as refFile:
# for each tmx file
for indexTmx, tmxFilePath in tqdm(enumerate(filePathList)):
tmxFilePath = b000path.desAnonymizePath(tmxFilePath)
fileNotFound = False
# get the list of lines
try:
with open(u'{0}.en'.format(tmxFilePath)) as enFile:
enLines = enFile.readlines()
with open(u'{0}.fr'.format(tmxFilePath)) as frFile:
frLines = frFile.readlines()
except FileNotFoundError:
print(u'FILE NOT FOUND IN : {0}'.format(tmxFilePath))
fileNotFound = True
if fileNotFound is False:
# get each line
for i in range(len(enLines)):
srcLn, trgtLn, enLn, frLn = getLines(i, enLines, frLines, tmxFilePath)
# apply the heuristics
for heurName in heuristicsList:
heurFolder = u'{0}{1}/'.format(out, heurName)
# make the folder
utilsOs.createEmptyFolder(heurFolder)
# make the output files
outputScorePath = u'{0}score.tsv'.format(heurFolder)
# add the scores to the files
with open(outputScorePath, u'a') as scoreFile:
scoreFile.write(getLnToWrite(heurName, srcLn, trgtLn, enLn, frLn,
placeInDocument=float(i)/float(len(enLines)),
starbucksExprDict=starbucksExprDict,
starbucksWordDict=starbucksWordDict))
# if the reference output already exists, don't write on it
if referenceAlreadyExists is True:
pass
else:
# write the ref line
refFile.write(u'{0}\t{1}\n'.format(b000path.anonymizePath(tmxFilePath), i))
return None
def makeHourlyIndexDict():
folderPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/'
with open(u'{0}files.paths'.format(folderPath)) as pathsFile:
nbPaths = len(pathsFile.readlines())
id = 0
lastIdx = 0
aDict = {}
for idx in range(0, nbPaths, 600): # range(364949, nbPaths, 600)
aDict[id] = list(range(lastIdx, idx))
lastIdx = idx
id += 1
aDict[id] = list(range(lastIdx, 394949))
schedule = u'{0}heurSchedule.json'.format(folderPath)
utilsOs.dumpDictToJsonFile(aDict, pathOutputFile=schedule, overwrite=True)
def applyOnNotFlaggedForNHours(n=1):
schedule = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/heurSchedule.json'
scheduleDict = utilsOs.openJsonFileAsDict(schedule)
# apply for n hours
for nId in list(scheduleDict.keys()[:n]):
indexesToApply = scheduleDict[nId]
applyHeuristicsOnNotFlaggedCorpus(indexesToApply, nId)
# remove from the dict once we dump the scores
del scheduleDict[nId]
# save the remaining schedule dict
utilsOs.dumpDictToJsonFile(scheduleDict, pathOutputFile=schedule, overwrite=True)
def applyOnSpecificId(idList):
schedule = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/heurSchedule.json'
while True:
try:
scheduleDict = utilsOs.openJsonFileAsDict(schedule)
break
except json.decoder.JSONDecodeError:
print(u'Try again to access the json. {0}'.format(idList[0]))
time.sleep(7)
for nId in idList:
try:
indexesToApply = scheduleDict[nId]
# apply
heurs = [u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'tabl', u'strBcks',
u'punct', u'gibb']
applyHeuristicsOnNotFlaggedCorpus(indexesToApply, nId, heuristicsList=heurs)
except KeyError:
print('ATTENTION: KEYERROR with id {0} #####'.format(nId))
print(u'FINISHED {0}...'.format(idList[0]))
def generateCmd(nHours=1, machineList=None):
if machineList is None:
machineList = [u'octal06', u'octal03', u'octal04', u'octal05', u'octal07', u'octal17', u'ilar01', u'ilar02',
u'bart2', u'bart3', u'bart4', u'bart5', u'bart6', u'bart7', u'bart10', u'kakia1',
u'kakia2', u'kakib2', u'kakic2', u'kakid1', u'kakid2', u'kakie2', u'kakif1', u'kakif2']
schedule = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/heurSchedule.json'
scheduleDict = utilsOs.openJsonFileAsDict(schedule)
scheduleIdList = list(scheduleDict.keys())
commandLns = []
for machine in machineList:
commandLns.append(u'#########################################################')
commandLns.append(u'ssh {0}'.format(machine))
commandLns.append(u'source .bashrc')
commandLns.append(u'cd ~/Documents/workRALI/004tradBureau')
simultaneousRuns = 4
# if the machine is high end, run more
if machine in [u'bart2', u'bart3', u'bart4', u'bart5', u'bart6', u'bart7', u'bart10', u'kakid2']:
simultaneousRuns = 6
if machine in [u'kakia1', u'kakia2', u'kakic2', u'kakid1', u'kakie2', u'kakif1', u'kakif2']:
simultaneousRuns = 8
for n in range(simultaneousRuns):
commandLns.append(u'python b009applyHeuristicsOnMC.py -ap True -w {0} -li {1} &'.format(n*20, u'*'.join(scheduleIdList[:nHours])))
scheduleIdList = [nId for nId in scheduleIdList if nId not in scheduleIdList[:nHours]]
# commandLns[-1] = commandLns[-1].replace(u' &', u'')
commandLns.append(u'\nENDSSH\n')
print(u'\n'.join(commandLns))
def joinNotFlaggedFolder(notFlaggedPath=u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/NOT-FLAGGED/'):
""" given a path to the separated not-flagged corpus, joins it in single score and ref files """
tot = 0
notFound = 0
# make the output path
refPathOut = u'{0}reference.tsv'.format(notFlaggedPath)
nbPathOut = u'{0}nb/score.tsv'.format(notFlaggedPath)
cogPathOut = u'{0}cog/score.tsv'.format(notFlaggedPath)
lenPathOut = u'{0}len/score.tsv'.format(notFlaggedPath)
faPathOut = u'{0}fa/score.tsv'.format(notFlaggedPath)
ionPathOut = u'{0}ion/score.tsv'.format(notFlaggedPath)
swPathOut = u'{0}sw/score.tsv'.format(notFlaggedPath)
spellPathOut = u'{0}spell/score.tsv'.format(notFlaggedPath)
urlPathOut = u'{0}url/score.tsv'.format(notFlaggedPath)
monoPathOut = u'{0}mono/score.tsv'.format(notFlaggedPath)
tablPathOut = u'{0}tabl/score.tsv'.format(notFlaggedPath)
strBcksPathOut = u'{0}strBcks/score.tsv'.format(notFlaggedPath)
punctPathOut = u'{0}punct/score.tsv'.format(notFlaggedPath)
gibbPathOut = u'{0}gibb/score.tsv'.format(notFlaggedPath)
# delete the existing file content
for folderPath in [refPathOut, nbPathOut, cogPathOut, lenPathOut, faPathOut, ionPathOut, swPathOut, spellPathOut,
urlPathOut, monoPathOut, tablPathOut, strBcksPathOut, punctPathOut, gibbPathOut]:
utilsOs.deleteFileContent(folderPath)
# open each n segmentation file in order to join them in a single file
for n in range(3013):
# make the input paths
refPath = u'{0}{1}/reference.tsv'.format(notFlaggedPath, n)
nbPath = u'{0}{1}/nb/score.tsv'.format(notFlaggedPath, n)
cogPath = u'{0}{1}/cog/score.tsv'.format(notFlaggedPath, n)
lenPath = u'{0}{1}/len/score.tsv'.format(notFlaggedPath, n)
faPath = u'{0}{1}/fa/score.tsv'.format(notFlaggedPath, n)
ionPath = u'{0}{1}/ion/score.tsv'.format(notFlaggedPath, n)
swPath = u'{0}{1}/sw/score.tsv'.format(notFlaggedPath, n)
spellPath = u'{0}{1}/spell/score.tsv'.format(notFlaggedPath, n)
urlPath = u'{0}{1}/url/score.tsv'.format(notFlaggedPath, n)
monoPath = u'{0}{1}/mono/score.tsv'.format(notFlaggedPath, n)
tablPath = u'{0}{1}/tabl/score.tsv'.format(notFlaggedPath, n)
strBcksPath = u'{0}{1}/strBcks/score.tsv'.format(notFlaggedPath, n)
punctPath = u'{0}{1}/punct/score.tsv'.format(notFlaggedPath, n)
gibbPath = u'{0}{1}/gibb/score.tsv'.format(notFlaggedPath, n)
# join them in a single file
try:
with open(refPath) as refFile:
refLns = refFile.readlines()
heurLnsList = []
for hPath in [nbPath, cogPath, lenPath, faPath, ionPath, swPath, spellPath, urlPath, monoPath,
tablPath, strBcksPath, punctPath, gibbPath]:
try:
with open(hPath) as hFile:
heurLnsList.append(hFile.readlines())
except FileNotFoundError:
heurLnsList.append(None)
# pass each line into a single output file
with open(refPathOut, u'a') as refOut:
with open(nbPathOut, u'a') as nbOut:
with open(cogPathOut, u'a') as cogOut:
with open(lenPathOut, u'a') as lenOut:
with open(faPathOut, u'a') as faOut:
with open(ionPathOut, u'a') as ionOut:
with open(swPathOut, u'a') as swOut:
with open(spellPathOut, u'a') as spellOut:
with open(urlPathOut, u'a') as urlOut:
with open(monoPathOut, u'a') as monoOut:
with open(tablPathOut, u'a') as tablOut:
with open(strBcksPathOut, u'a') as strBcksOut:
with open(punctPathOut, u'a') as punctOut:
with open(gibbPathOut, u'a') as gibbOut:
# dump the ref lines
for indRef, refLn in enumerate(refLns):
refOut.write(refLn)
# dump lines for each heuristic - Nb
if heurLnsList[0] is not None:
nbOut.write(heurLnsList[0][indRef])
else:
nbOut.write(u'NA\n')
# cog
if heurLnsList[1] is not None:
cogOut.write(heurLnsList[1][indRef])
else:
cogOut.write(u'NA\n')
# len
if heurLnsList[2] is not None:
lenOut.write(heurLnsList[2][indRef])
else:
lenOut.write(u'NA\n')
# fa
if heurLnsList[3] is not None:
faOut.write(heurLnsList[3][indRef])
else:
faOut.write(u'NA\n')
notFound += 1
# ion
if heurLnsList[4] is not None:
ionOut.write(heurLnsList[4][indRef])
else:
ionOut.write(u'NA\n')
notFound += 1
# sw
if heurLnsList[5] is not None:
swOut.write(heurLnsList[5][indRef])
else:
swOut.write(u'NA\n')
notFound += 1
# spell
if heurLnsList[6] is not None:
spellOut.write(heurLnsList[6][indRef])
else:
spellOut.write(u'NA\n')
notFound += 1
# url
if heurLnsList[7] is not None:
urlOut.write(heurLnsList[7][indRef])
else:
urlOut.write(u'NA\n')
notFound += 1
# mono
if heurLnsList[8] is not None:
monoOut.write(heurLnsList[8][indRef])
else:
monoOut.write(u'NA\n')
notFound += 1
# tabl
if heurLnsList[9] is not None:
tablOut.write(heurLnsList[9][indRef])
else:
tablOut.write(u'NA\n')
notFound += 1
# strBcks
if heurLnsList[10] is not None:
strBcksOut.write(heurLnsList[10][indRef])
else:
strBcksOut.write(u'NA\n')
notFound += 1
# punct
if heurLnsList[11] is not None:
punctOut.write(heurLnsList[11][indRef])
else:
punctOut.write(u'NA\n')
notFound += 1
# gibb
if heurLnsList[12] is not None:
gibbOut.write(heurLnsList[12][indRef])
else:
gibbOut.write(u'NA\n')
notFound += 1
# count the total
tot += 1
# if there is no reference file
except FileNotFoundError:
print(u'NO REFERENCE FILE IN THE FOLDER ', n)
print(u'TOTAL SPs : ', tot)
print(u'total not found files : ', notFound)
def repairHeuristicsScore(heuristicName, corpus=[u'ALIGNMENT-QUALITY', u'MISALIGNED', u'QUALITY', u'NOT-FLAGGED']):
""" rewrite the score in order to correct some problems
u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'tabl', 'strBcks', 'punct', 'gibb' """
basePath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/006appliedHeuristics/'
for name in corpus:
scorePath = u'{0}{1}/{2}/score.tsv'.format(basePath, name, heuristicName)
with open(scorePath) as scoreFile:
scoreLines = scoreFile.readlines()
# line by line
for lnIndex, scoreLn in enumerate(scoreLines):
scoreList = scoreLn.replace(u'\n', u'').split(u'\t')
if scoreList[0] != u'na':
# change depending on heuristic
if heuristicName in [u'url']:
smallest = min([int(scoreList[3]), int(scoreList[4])])
greatest = max([int(scoreList[3]), int(scoreList[4])])
if int(scoreList[3]) + int(scoreList[4]) != 0:
scoreList[0] = str(float(smallest) / float(greatest))
scoreLines[lnIndex] = u'{0}\n'.format(u'\t'.join(scoreList))
elif heuristicName in [u'mono']:
smallest = min([int(scoreList[1]), int(scoreList[2])])
greatest = max([int(scoreList[1]), int(scoreList[2])])
if int(scoreList[1]) + int(scoreList[2]) != 0:
scoreList[0] = str(float(smallest) / float(greatest))
scoreLines[lnIndex] = u'{0}\n'.format(u'\t'.join(scoreList))
elif heuristicName in [u'ion']:
if int(scoreList[1]) + int(scoreList[2]) <= 2:
scoreList[0] = u'na'
scoreLines[lnIndex] = u'{0}\n'.format(u'\t'.join(scoreList))
utilsOs.dumpRawLines(scoreLines, scorePath, addNewline=False, rewrite=True)
def applyHeurAndDumpScoresAndMetadata(inEnPath, inFrPath, outScMdPath):
"""
Applies the heuristics and dumps in a file all the scores with their respective metadata.
:param inEnPath: path to the english sentences of the SP
:param inFrPath: path to the french sentences of the SP
:param outScMdPath: path to the SP's scores and metadata output
:return: None
"""
scoresList = []
scoresAndMetadataList = []
heuristicsList = [u'nb', u'cog', u'len', u'fa', u'ion', u'sw', u'spell', u'url', u'mono', u'tabl', u'strBcks',
u'punct', u'gibb']
outScPath = outScMdPath.replace(u'AndMetaData', u'')
# delete the previous files
utilsOs.deleteFileContent(outScPath)
utilsOs.deleteFileContent(outScMdPath)
# get the heuristic needed objects
starbucksExprDict, starbucksWordDict = utilsString.openEn2FrStarbucksDict()
fauxAmisEn = utilsString.openFauxAmisDict(enToFr=True, withDescription=False, reducedVersion=True)
fauxAmisFr = utilsString.openFauxAmisDict(enToFr=False, withDescription=False, reducedVersion=True)
stopWordsEnFrDict = utilsString.openEn2FrStopWordsDict()
enLexicon = utilsString.getWiki1000MostCommonLexicon(u'en')
frLexicon = utilsString.getWiki1000MostCommonLexicon(u'fr')
# open the SP files
with open(inEnPath) as enFile:
with open(inFrPath) as frFile:
# first line
enLn = enFile.readline().replace(u'\n', u'')
frLn = frFile.readline().replace(u'\n', u'')
while enLn or frLn:
scString = u''
scMdString = u''
for heurName in heuristicsList:
# get the all scores string
allScores = getLnToWrite(heurName, enLn, frLn, enLn, frLn,
placeInDocument=None, stopWordsEnFrDict=stopWordsEnFrDict,
enLex=enLexicon, frLex=frLexicon, fauxAmisEn=fauxAmisEn,
fauxAmisFr=fauxAmisFr, starbucksExprDict=starbucksExprDict,
starbucksWordDict=starbucksWordDict)
# if it's the first line, we do not add a tabulation to separate
sep = u'' if scString == u'' else u'\t'
# add to the recollection of scores string
scString = u'{0}{1}{2}'.format(scString, sep, allScores.split(u'\t')[0])
# add to the scores and metadata string
scMdString = u'{0}{1}{2}'.format(scMdString, sep, allScores.replace(u'\n', u''))
# add to the scores list
scoresList.append(scString)
scoresAndMetadataList.append(scMdString)
# dump after a 1000 elements
if len(scoresList) >= 1000:
utilsOs.appendMultLinesToFile(scoresList, outScPath, addNewLine=True)
utilsOs.appendMultLinesToFile(scoresAndMetadataList, outScMdPath, addNewLine=True)
scoresList = []
scoresAndMetadataList = []
# next line
enLn = enFile.readline().replace(u'\n', u'')
frLn = frFile.readline().replace(u'\n', u'')
# print(bool(enLn), bool(frLn))
# make the last dump with the remaining elements
utilsOs.appendMultLinesToFile(scoresList, outScPath, addNewLine=True)
utilsOs.appendMultLinesToFile(scoresAndMetadataList, outScMdPath, addNewLine=True)
# count the time the algorithm takes to run
startTime = utilsOs.countTime()
# make a changement in the heuristics score
## repairHeuristicsScore(u'mono')
# if args.apply is False:
# # makeHourlyIndexDict()
# generateCmd(nHours=26,
# machineList=[u'octal05', u'octal10', u'bart2', u'bart3', u'bart4', u'bart5', u'bart6',
# u'bart7', u'bart10', u'kakia1', u'kakia2', u'kakib2', u'kakic2', u'kakid1',
# u'kakid2', u'kakie2', u'kakif1', u'kakif2', u'octal06'])
# else:
# if args.listIds == u'none':
# if args.corpus not in [u'nf', u'np', u'n', u'NOT-FLAGGED']:
# # apply on the flagged corpus
# applyHeuristicOnCorpus(getRightCorpus(args.corpus), getRightHeuristic(args.heuristic))
# else:
# # apply on the non-flagged corpus
# applyOnNotFlaggedForNHours(args.nhours)
# else:
# # apply on the divided non-flagged corpus
# time.sleep(args.wait)
# applyOnSpecificId(args.listIds.split(u'*'))
# # join the divided files of the not-flagged corpus
# joinNotFlaggedFolder()
# # apply the heuristics score to shivendra's train set
# 7M train dataset
# inEnPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/bal_train_en'
# inFrPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/bal_train_fr'
# outPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/bal_train_scoresAndMetaData'
# 17M train dataset
# inEnPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/train_en'
# inFrPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/train_fr'
# outPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/009ShivsTrainSubset/train/train_scoresAndMetaData'
# # 17K BT-annotated as bad
# inEnPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/BT2/problematic/extracted.en'
# inFrPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/BT2/problematic/extracted.fr'
# outPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/BT2/problematic/extracted.scoresAndMetaData'
# applyHeurAndDumpScoresAndMetadata(inEnPath, inFrPath, outPath)
# # apply the heuristics score to 17K randomly extracted fron D1 "no problematic"
# inEnPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/D1/noProblematic/17kRandom/extracted.en'
# inFrPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/D1/noProblematic/17kRandom/extracted.fr'
# outPath = u'/data/rali5/Tmp/alfonsda/workRali/004tradBureau/007corpusExtraction/D1/noProblematic/17kRandom/extracted.scoresAndMetaData'
# applyHeurAndDumpScoresAndMetadata(inEnPath, inFrPath, outPath)
# print the time the algorithm took to run
print(u'\nTIME IN SECONDS ::', utilsOs.countTime(startTime))