-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_generator.py
39 lines (33 loc) · 1.89 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
class data_generator:
def __init__(self,file_name):
self.file_name=file_name
def get_set(self):
set = pd.read_csv(self.file_name ,delimiter = ',')
return set
if __name__ == "__main__":
for i in range(0,10):
data =data_generator(('G:/semester3/research/rm/pan/pan2020-rmit/text_classification/data/emotionresults/%s.csv' %i))
set = data.get_set()
new_set=set.groupby('user').agg(
median_score = pd.NamedAgg(column = 'fake_score', aggfunc='median'),
mean_score = pd.NamedAgg(column = 'fake_score', aggfunc='mean'),
score_std = pd.NamedAgg(column = 'fake_score', aggfunc='std'),
label = pd.NamedAgg(column = 'truth', aggfunc='mean'),
median_compound = pd.NamedAgg(column = 'emotion_score', aggfunc='median'),
mean_compound = pd.NamedAgg(column = 'emotion_score', aggfunc='mean'),
compound_std = pd.NamedAgg(column = 'emotion_score', aggfunc='std'),
emoji = pd.NamedAgg(column = 'emoji', aggfunc='mean'),
hash = pd.NamedAgg(column = 'hash',aggfunc = 'mean'),
hash_median = pd.NamedAgg(column = 'hash',aggfunc = 'median'),
hash_std = pd.NamedAgg(column = 'hash',aggfunc = 'std'),
url = pd.NamedAgg(column = 'url',aggfunc = 'mean'),
url_median = pd.NamedAgg(column = 'url',aggfunc = 'median'),
url_std = pd.NamedAgg(column = 'url',aggfunc = 'std'),
trump = pd.NamedAgg(column = 'trump',aggfunc = 'mean'),
trump_median = pd.NamedAgg(column = 'trump',aggfunc = 'median'),
trump_std = pd.NamedAgg(column = 'trump',aggfunc = 'std')
).reset_index()
print(new_set)
# new_set['emoji'] = new_set['emoji'].map(lambda x: 0 if (x < 0.1) else 1)
new_set.to_csv(('csvs/3rd/user%s.csv' %i), index=False)